Menu Close

for-every-real-set-R-f-R-and-f-is-Smooth-function-and-f-is-f-C-2-x-f-1-x-gt-0-f-2-x-lt-0-then-prove-0-t-cos-f-x-dx-2-f-1-t-t-R-




Question Number 213290 by issac last updated on 02/Nov/24
for every real set R , f∈R  and f is Smooth function. and f is f∈C^2   ∀_x  f^((1)) (x)>0 , f^((2)) (x)<0  then prove ∣∫_0 ^( t)  cos(f(x))dx∣≤(2/(f^((1)) (t)))  t∈R
foreveryrealsetR,fRandfisSmoothfunction.andfisfC2xf(1)(x)>0,f(2)(x)<0thenprove0tcos(f(x))dx∣≤2f(1)(t)tR
Answered by MrGaster last updated on 02/Nov/24
∣∫_0 ^t cos(f(x))dx∣  =∣[((sin(f(x)))/(f′(x)))]_0 ^t −∫_0 ^t ((sin(f(x))∫^(′′) (x))/((f′(x))^2 ))dx∣  ≤∣((∣sin(f(t))∣)/(f′(t)))+((∣sin(f(0))∣)/(f′(0)))+∫_0 ^t ((∣sin(f(x))f′′(x))/((f′(x))^2 ))dx  ≤((∣sin(f(t))∣)/(f′(t)))+((∣sin(f(0))∣)/(f′(0)))+∫_0 ^t ((∣sin(f(x))∣∣f′′(x)∣)/((f′(x))^2 ))dx  ≤(1/(f′(t)))+(1/(f′(0)))+∫_0 ^t ((∣f^(′′) (x)∣)/((f′(x))^2 ))dx  ≤(1/(f′(t)))+(1/(f′(0)))+∫_0 ^t ((−f′′(x))/((f′(x))^2 ))dx  =(1/(f′(t)))+(1/(f′(0)))+[−(1/(f′(x)))]_0 ^t   =(1/(f′(t)))+(1/(f′(0)))−(1/(f′(t)))+(1/(f′(0)))  =(2/(f′(0)))  ≤(2/(f′(t)))
0tcos(f(x))dx=∣[sin(f(x))f(x)]0t0tsin(f(x))(x)(f(x))2dx≤∣sin(f(t))f(t)+sin(f(0))f(0)+0tsin(f(x))f(x)(f(x))2dxsin(f(t))f(t)+sin(f(0))f(0)+0tsin(f(x))∣∣f(x)(f(x))2dx1f(t)+1f(0)+0tf(x)(f(x))2dx1f(t)+1f(0)+0tf(x)(f(x))2dx=1f(t)+1f(0)+[1f(x)]0t=1f(t)+1f(0)1f(t)+1f(0)=2f(0)2f(t)

Leave a Reply

Your email address will not be published. Required fields are marked *