dx-4x-2-1-3- Tinku Tara November 3, 2024 Integration 0 Comments FacebookTweetPin Question Number 213376 by RoseAli last updated on 03/Nov/24 ∫dx(4x2+1)3 Commented by Frix last updated on 03/Nov/24 Sometimesjustuseyourbrain&experienceddx[g(x)4x2+1]=g′(x)(4x2+1)−4g(x)(4x2+1)32g′(x)(4x2+1)−4g(x)=1⇒g(x)=x∫dx(4x2+1)3=x4x2+1+C Answered by Frix last updated on 03/Nov/24 ∫dx(4x2+1)32=[t=tan−12x]12∫costdt=12sint==x4x2+1+C Answered by Frix last updated on 03/Nov/24 ∫dx(4x2+1)32=[t=2x+4x2+1]∫2t(t2+1)2dt==−1t2+1=x4x2+1+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: y-2-4px-At-1-3-1-1-4p-1-3-h-At-5-3-2-4-4p-5-3-h-4-5-3-h-1-3-h-4-3-4h-5-3-h-3h-1-3-hNext Next post: Question-213371 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.