Menu Close

dx-4x-2-1-3-




Question Number 213376 by RoseAli last updated on 03/Nov/24
∫(dx/( (√((4x^2 +1)^3 ))))
dx(4x2+1)3
Commented by Frix last updated on 03/Nov/24
Sometimes just use your brain & experience  (d/dx)[((g(x))/( (√(4x^2 +1))))]=((g′(x)(4x^2 +1)−4g(x))/((4x^2 +1)^(3/2) ))  g′(x)(4x^2 +1)−4g(x)=1 ⇒ g(x)=x  ∫(dx/( (√((4x^2 +1)^3 ))))=(x/( (√(4x^2 +1))))+C
Sometimesjustuseyourbrain&experienceddx[g(x)4x2+1]=g(x)(4x2+1)4g(x)(4x2+1)32g(x)(4x2+1)4g(x)=1g(x)=xdx(4x2+1)3=x4x2+1+C
Answered by Frix last updated on 03/Nov/24
∫(dx/((4x^2 +1)^(3/2) )) =^([t=tan^(−1)  2x])  (1/2)∫cos t dt=(1/2)sin t =  =(x/( (√(4x^2 +1))))+C
dx(4x2+1)32=[t=tan12x]12costdt=12sint==x4x2+1+C
Answered by Frix last updated on 03/Nov/24
∫(dx/((4x^2 +1)^(3/2) )) =^([t=2x+(√(4x^2 +1))])  ∫((2t)/((t^2 +1)^2 ))dt=  =−(1/(t^2 +1))=(x/( (√(4x^2 +1))))+C
dx(4x2+1)32=[t=2x+4x2+1]2t(t2+1)2dt==1t2+1=x4x2+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *