Question Number 213376 by RoseAli last updated on 03/Nov/24
$$\int\frac{{dx}}{\:\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }} \\ $$
Commented by Frix last updated on 03/Nov/24
$$\mathrm{Sometimes}\:\mathrm{just}\:\mathrm{use}\:\mathrm{your}\:\mathrm{brain}\:\&\:\mathrm{experience} \\ $$$$\frac{{d}}{{dx}}\left[\frac{{g}\left({x}\right)}{\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}\right]=\frac{{g}'\left({x}\right)\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{4}{g}\left({x}\right)}{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${g}'\left({x}\right)\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{4}{g}\left({x}\right)=\mathrm{1}\:\Rightarrow\:{g}\left({x}\right)={x} \\ $$$$\int\frac{{dx}}{\:\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }}=\frac{{x}}{\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}+{C} \\ $$
Answered by Frix last updated on 03/Nov/24
$$\int\frac{{dx}}{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\overset{\left[{t}=\mathrm{tan}^{−\mathrm{1}} \:\mathrm{2}{x}\right]} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{cos}\:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:{t}\:= \\ $$$$=\frac{{x}}{\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}+{C} \\ $$
Answered by Frix last updated on 03/Nov/24
$$\int\frac{{dx}}{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\overset{\left[{t}=\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\right]} {=}\:\int\frac{\mathrm{2}{t}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dt}= \\ $$$$=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}=\frac{{x}}{\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}+{C} \\ $$