Menu Close

1-2-x-1-2-2-x-2-3-2-x-3-100-2-x-100-10100-for-x-non-negative-integers-find-the-possible-value-of-x-




Question Number 213423 by efronzo1 last updated on 05/Nov/24
  ⌊ (1/2)x−1⌋ + ⌊ (2/2)x−2⌋+⌊(3/2)x−3⌋+...+⌊((100)/2)x−100⌋ ≤10100    for x non negative integers.     find the possible value of x
12x1+22x2+32x3++1002x10010100forxnonnegativeintegers.findthepossiblevalueofx
Answered by golsendro last updated on 05/Nov/24
Commented by hardmath last updated on 05/Nov/24
thankyou dearprofessor
thankyoudearprofessor
Commented by mr W last updated on 05/Nov/24
when A≤B is given and you get  A≤C, how can you then say C≤B,  not B≤C?
whenABisgivenandyougetAC,howcanyouthensayCB,notBC?
Commented by mr W last updated on 06/Nov/24
how can you go the step   from ∣z_1 +z_2 ∣≤∣z_1 ∣+∣z_2 ∣  to ⌊z_1 −z_2 ⌋≤⌊z_1 ⌋−⌊z_2 ⌋?
howcanyougothestepfromz1+z2∣⩽∣z1+z2toz1z2z1z2?
Commented by golsendro last updated on 06/Nov/24
what the correct answer?
whatthecorrectanswer?
Commented by mr W last updated on 06/Nov/24
your answer is by accident correct,  but your path is wrong.
youranswerisbyaccidentcorrect,butyourpathiswrong.
Commented by golsendro last updated on 06/Nov/24
 ⌊ x−y ⌋ ≥ ⌊x ⌋ − ⌊ y ⌋    it′s correct ?    ⌊ (1/2)−1 ⌋= ⌊−(1/2) ⌋ = −1    ⌊(1/2) ⌋−⌊ 1 ⌋ = 0−1= −1
xyxyitscorrect?121=12=1121=01=1
Answered by mr W last updated on 06/Nov/24
case 1: x=even=2n with n≥0  ⌊n−1⌋+⌊2n−2⌋+...+⌊100n−100]≤10100  (1+2+...+100)(n−1)≤10100  5050(n−1)≤10100  ⇒n≤((10100)/(5050))+1=3   ⇒x=0, 2, 4, 6  case 2: x=odd=2n+1 with n≥0  ⌊n+(1/2)−1⌋+⌊2n+1−2⌋+⌊3n+(3/2)−3⌋+...+⌊100n+50−100]≤10100  (1+2+...+100)(n−1)+⌊(1/2)⌋+⌊1⌋+⌊(3/2)⌋+...+⌊((99)/2)⌋+⌊50]≤10100  5050(n−1)+0+2×1+2×2+...+2×49+50≤10100  5050(n−1)+0+2(1+2+...+49+50)−50≤10100  5050(n−1)+50×51−50≤10100  5050(n−1)+2500≤10100  ⇒n≤((10100−2500)/(5050))+1≈2.505 ⇒n=0, 1, 2  ⇒x=1, 3, 5  summary:  x=0, 1, 2, 3, 4, 5, 6
case1:x=even=2nwithn0n1+2n2++100n100]10100(1+2++100)(n1)101005050(n1)10100n101005050+1=3x=0,2,4,6case2:x=odd=2n+1withn0n+121+2n+12+3n+323++100n+50100]10100(1+2++100)(n1)+12+1+32++992+50]101005050(n1)+0+2×1+2×2++2×49+50101005050(n1)+0+2(1+2++49+50)50101005050(n1)+50×5150101005050(n1)+250010100n1010025005050+12.505n=0,1,2x=1,3,5summary:x=0,1,2,3,4,5,6

Leave a Reply

Your email address will not be published. Required fields are marked *