Question Number 213430 by hardmath last updated on 05/Nov/24
$$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{x}\:+\:\left[\mathrm{y}\right]\:+\:\left\{\mathrm{z}\right\}\:=\:\mathrm{9},\mathrm{4}}\\{\left[\mathrm{x}\right]\:+\:\left\{\mathrm{y}\right\}\:+\:\mathrm{z}\:=\:\mathrm{11},\mathrm{3}}\\{\left\{\mathrm{x}\right\}\:+\:\mathrm{y}\:+\:\left[\mathrm{z}\right]\:=\:\mathrm{10},\mathrm{5}}\end{cases}\:\:\:\:\:\mathrm{find}:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Answered by A5T last updated on 05/Nov/24
$$\left({i}\right)−\left({ii}\right):\:\left\{{x}\right\}+\left[{y}\right]−\left\{{y}\right\}−\left[{z}\right]=−\mathrm{1}.\mathrm{9}…\left({iv}\right) \\ $$$$\left({iv}\right)−\left({iii}\right)\Rightarrow\left[{y}\right]−\left\{{y}\right\}−{y}−\mathrm{2}\left[{z}\right]=−\mathrm{12}.\mathrm{4} \\ $$$$\Rightarrow\left\{{y}\right\}+\left[{z}\right]=\mathrm{6}.\mathrm{2};\:\Rightarrow\left[{z}\right]=\mathrm{6}\Rightarrow\left\{{y}\right\}=\mathrm{0}.\mathrm{2} \\ $$$$\left({iii}\right)\Rightarrow\left\{{x}\right\}+\left[{y}\right]+\left\{{y}\right\}=\mathrm{4}.\mathrm{5}\Rightarrow\left\{{x}\right\}+\left[{y}\right]=\mathrm{4}.\mathrm{3} \\ $$$$\Rightarrow\left[{y}\right]=\mathrm{4}\Rightarrow\left\{{x}\right\}=\mathrm{0}.\mathrm{3} \\ $$$$\left({i}\right)\Rightarrow\left[{x}\right]+\mathrm{0}.\mathrm{3}+\mathrm{4}+\left\{{z}\right\}=\mathrm{9}.\mathrm{4}\Rightarrow\left[{x}\right]+\left\{{z}\right\}=\mathrm{5}.\mathrm{1} \\ $$$$\Rightarrow\left[{x}\right]=\mathrm{5};\left\{{z}\right\}=\mathrm{0}.\mathrm{1}\Rightarrow{x}=\mathrm{5}.\mathrm{3}\Rightarrow\left({x},{y},{z}\right)=\left(\mathrm{5}.\mathrm{3},\mathrm{4}.\mathrm{2},\mathrm{6}.\mathrm{1}\right) \\ $$