Menu Close

B-




Question Number 213467 by efronzo1 last updated on 06/Nov/24
   B
$$\:\:\:\underbrace{\boldsymbol{{B}}} \\ $$
Commented by mr W last updated on 06/Nov/24
��
Commented by mr W last updated on 06/Nov/24
question is strange.  if X≥1, then X≥2, X≥3, etc. are all  true. that means for X≥a, there is  no maximum value of a.
$${question}\:{is}\:{strange}. \\ $$$${if}\:{X}\geqslant\mathrm{1},\:{then}\:{X}\geqslant\mathrm{2},\:{X}\geqslant\mathrm{3},\:{etc}.\:{are}\:{all} \\ $$$${true}.\:{that}\:{means}\:{for}\:{X}\geqslant{a},\:{there}\:{is} \\ $$$${no}\:{maximum}\:{value}\:{of}\:{a}. \\ $$
Commented by A5T last updated on 06/Nov/24
Say X=∣x−1∣+∣x−2∣+∣x−3∣+...+∣x−2022∣≥a^2   must be true for all x.  I showed that X≥1011^2  and equality holds when  x=((2023)/2).  So, the maximum a for which X≥a^2  will be true  for all x is 1011. So, if a>1011; then X≥a^2  will  no longer be true for x=((2023)/2) for instance.
$${Say}\:{X}=\mid{x}−\mathrm{1}\mid+\mid{x}−\mathrm{2}\mid+\mid{x}−\mathrm{3}\mid+…+\mid{x}−\mathrm{2022}\mid\geqslant{a}^{\mathrm{2}} \\ $$$${must}\:{be}\:{true}\:{for}\:{all}\:{x}. \\ $$$${I}\:{showed}\:{that}\:{X}\geqslant\mathrm{1011}^{\mathrm{2}} \:{and}\:{equality}\:{holds}\:{when} \\ $$$${x}=\frac{\mathrm{2023}}{\mathrm{2}}. \\ $$$${So},\:{the}\:{maximum}\:{a}\:{for}\:{which}\:{X}\geqslant{a}^{\mathrm{2}} \:{will}\:{be}\:{true} \\ $$$${for}\:{all}\:{x}\:{is}\:\mathrm{1011}.\:{So},\:{if}\:{a}>\mathrm{1011};\:{then}\:{X}\geqslant{a}^{\mathrm{2}} \:{will} \\ $$$${no}\:{longer}\:{be}\:{true}\:{for}\:{x}=\frac{\mathrm{2023}}{\mathrm{2}}\:{for}\:{instance}. \\ $$
Answered by A5T last updated on 06/Nov/24
∣x−1∣+∣2022−x∣+∣x−2∣+∣2021−x∣+...+  ∣x−1011∣+∣1012−x∣≥2021+2019+2017+...+1  =1011^2 ⇒Maximum value of a=1011
$$\mid{x}−\mathrm{1}\mid+\mid\mathrm{2022}−{x}\mid+\mid{x}−\mathrm{2}\mid+\mid\mathrm{2021}−{x}\mid+…+ \\ $$$$\mid{x}−\mathrm{1011}\mid+\mid\mathrm{1012}−{x}\mid\geqslant\mathrm{2021}+\mathrm{2019}+\mathrm{2017}+…+\mathrm{1} \\ $$$$=\mathrm{1011}^{\mathrm{2}} \Rightarrow{Maximum}\:{value}\:{of}\:{a}=\mathrm{1011} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *