Menu Close

B-




Question Number 213467 by efronzo1 last updated on 06/Nov/24
   B
B
Commented by mr W last updated on 06/Nov/24
��
Commented by mr W last updated on 06/Nov/24
question is strange.  if X≥1, then X≥2, X≥3, etc. are all  true. that means for X≥a, there is  no maximum value of a.
questionisstrange.ifX1,thenX2,X3,etc.arealltrue.thatmeansforXa,thereisnomaximumvalueofa.
Commented by A5T last updated on 06/Nov/24
Say X=∣x−1∣+∣x−2∣+∣x−3∣+...+∣x−2022∣≥a^2   must be true for all x.  I showed that X≥1011^2  and equality holds when  x=((2023)/2).  So, the maximum a for which X≥a^2  will be true  for all x is 1011. So, if a>1011; then X≥a^2  will  no longer be true for x=((2023)/2) for instance.
SayX=∣x1+x2+x3++x2022∣⩾a2mustbetrueforallx.IshowedthatX10112andequalityholdswhenx=20232.So,themaximumaforwhichXa2willbetrueforallxis1011.So,ifa>1011;thenXa2willnolongerbetrueforx=20232forinstance.
Answered by A5T last updated on 06/Nov/24
∣x−1∣+∣2022−x∣+∣x−2∣+∣2021−x∣+...+  ∣x−1011∣+∣1012−x∣≥2021+2019+2017+...+1  =1011^2 ⇒Maximum value of a=1011
x1+2022x+x2+2021x++x1011+1012x∣⩾2021+2019+2017++1=10112Maximumvalueofa=1011

Leave a Reply

Your email address will not be published. Required fields are marked *