Menu Close

Question-213503




Question Number 213503 by Spillover last updated on 06/Nov/24
Answered by mr W last updated on 06/Nov/24
Σ_(n=0) ^∞ x^(2n) =(1/(1−x^2 )) for ∣x∣<1  Σ_(n=0) ^∞ ∫_0 ^x x^(2n) dx=∫_0 ^x (dx/(1−x^2 ))  Σ_(n=0) ^∞ (x^(2n+1) /((2n+1)))=(1/2)ln ∣((1+x)/(1−x))∣  Σ_(n=0) ^∞ (x^(2n) /((2n+1)))=(1/(2x))ln ∣((1+x)/(1−x))∣  let x=(1/( (√2)))  Σ_(n=0) ^∞ (1/(2^n (2n+1)))=(1/( (√2)))ln ∣(((√2)+1)/( (√2)−1))∣  Σ_(n=0) ^∞ (1/(2^(n+(1/2)) (2n+1)))=(1/( 2))ln ∣(((√2)+1)/( (√2)−1))∣  Σ_(n=0) ^∞ (1/(2^((1/2)+n) (1+2n)))=ln ((√2)+1) ✓
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{{x}} {x}^{\mathrm{2}{n}} {dx}=\int_{\mathrm{0}} ^{{x}} \frac{{dx}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{2}{x}}\mathrm{ln}\:\mid\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid \\ $$$${let}\:{x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}\mid \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{2}{n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\:\mathrm{2}}\mathrm{ln}\:\mid\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}\mid \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}+{n}} \left(\mathrm{1}+\mathrm{2}{n}\right)}=\mathrm{ln}\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\:\checkmark \\ $$
Commented by Spillover last updated on 07/Nov/24
great solution
$${great}\:{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *