Menu Close

0-2pi-z-sin-z-1-cos-2-z-dz-z-2-1-z-2-1-dz-z-2-sin-z-z-2-1-dz-




Question Number 213518 by issac last updated on 07/Nov/24
∫_0 ^( 2π)  ((z∙sin(z))/(1+cos^2 (z))) dz  ∫_( ∣z∣=2)  (1/(z^2 +1)) dz  ∫_( ∣z∣=2)  ((sin(z))/(z^2 +1)) dz
02πzsin(z)1+cos2(z)dzz∣=21z2+1dzz∣=2sin(z)z2+1dz
Answered by Berbere last updated on 07/Nov/24
∫_0 ^π ((zsin(z))/(1+cos^2 (z)))+∫_0 ^π ((sin(π+z)(π+z)dz)/(1+coz^2 (z)))  =−π∫_0 ^π ((sin(z))/(1+cos^2 (z)))dz=πtan^(−1) (cos(z))]_0 ^π   =−(π^2 /2)  2..=2iπ Res((1/(z^2 +1)),i;−i}=2iπ.((1/(2i))−(1/(2i)))=0  ..3  =∫((sin(z))/(1+z^2 ))dz=2iπ Res(((sin(z))/(1+z^2 )),z=i,−i)  =2iπ[((sin(i))/(2i))+((sin(−i))/(−2i)))  =2πsin(i)=−2πsh(1)
0πzsin(z)1+cos2(z)+0πsin(π+z)(π+z)dz1+coz2(z)=π0πsin(z)1+cos2(z)dz=πtan1(cos(z))]0π=π222..=2iπRes(1z2+1,i;i}=2iπ.(12i12i)=0..3=sin(z)1+z2dz=2iπRes(sin(z)1+z2,z=i,i)=2iπ[sin(i)2i+sin(i)2i)=2πsin(i)=2πsh(1)
Commented by York12 last updated on 08/Nov/24
What′s your instgram or facebook account  ,please sir
Whatsyourinstgramorfacebookaccount,pleasesir
Commented by issac last updated on 08/Nov/24
thx...
thx

Leave a Reply

Your email address will not be published. Required fields are marked *