Menu Close

lim-n-r-1-n-1-2-r-where-greatest-integer-finction-




Question Number 213511 by universe last updated on 07/Nov/24
             lim_(n→∞)    [Σ_(r=1) ^n (1/2^r )]     where [•] greatest integer finction
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\left[\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{r}} }\right] \\ $$$$\:\:\:\mathrm{where}\:\left[\bullet\right]\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{finction} \\ $$
Answered by issac last updated on 07/Nov/24
Σ_(h=1) ^M  2^(−h) ≤1  lim_(M→∞) Σ_(h=1) ^M  2^(−h) ≤1  but Σ_(h=1) ^∞  2^(−h) =1  cus 0.99999......=1  ⌊lim_(M→∞)  Σ_(h=1) ^M  2^(−h) ⌋=1
$$\underset{{h}=\mathrm{1}} {\overset{{M}} {\sum}}\:\mathrm{2}^{−{h}} \leq\mathrm{1} \\ $$$$\underset{{M}\rightarrow\infty} {\mathrm{lim}}\underset{{h}=\mathrm{1}} {\overset{{M}} {\sum}}\:\mathrm{2}^{−{h}} \leq\mathrm{1}\:\:\mathrm{but}\:\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{2}^{−{h}} =\mathrm{1} \\ $$$$\mathrm{cus}\:\mathrm{0}.\mathrm{99999}……=\mathrm{1} \\ $$$$\lfloor\underset{{M}\rightarrow\infty} {\mathrm{lim}}\:\underset{{h}=\mathrm{1}} {\overset{{M}} {\sum}}\:\mathrm{2}^{−{h}} \rfloor=\mathrm{1} \\ $$
Commented by mr W last updated on 07/Nov/24
the question is  lim_(n→∞) ⌊×⌋=?  not ⌊lim_(n→∞) ×⌋=?
$${the}\:{question}\:{is} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\lfloor×\rfloor=? \\ $$$${not}\:\lfloor\underset{{n}\rightarrow\infty} {\mathrm{lim}}×\rfloor=? \\ $$
Answered by lepuissantcedricjunior last updated on 09/Nov/24
lim_(n→+∞) [Σ_(r=1) ^n (1/2^r )]=lim_(n→+∞) [−1+Σ_(r=0) ^n (1/2^r )]  =lim_(n→+∞) [−1+((1−((1/2^(n+1) )))/(1−(1/2)))]  =lim_(n→+∞) [−1+2(1−2^(−(n+1)) )]  =[−1+2]=1
$$\underset{\boldsymbol{{n}}\rightarrow+\infty} {\mathrm{lim}}\left[\underset{\boldsymbol{{r}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{{r}}} }\right]=\underset{\boldsymbol{{n}}\rightarrow+\infty} {\mathrm{lim}}\left[−\mathrm{1}+\underset{\boldsymbol{{r}}=\mathrm{0}} {\overset{\boldsymbol{{n}}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{{r}}} }\right] \\ $$$$=\underset{\boldsymbol{{n}}\rightarrow+\infty} {\mathrm{lim}}\left[−\mathrm{1}+\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} }\right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}\right] \\ $$$$=\underset{\boldsymbol{{n}}\rightarrow+\infty} {\mathrm{lim}}\left[−\mathrm{1}+\mathrm{2}\left(\mathrm{1}−\mathrm{2}^{−\left(\boldsymbol{{n}}+\mathrm{1}\right)} \right)\right] \\ $$$$=\left[−\mathrm{1}+\mathrm{2}\right]=\mathrm{1} \\ $$
Commented by mr W last updated on 09/Nov/24
wrong!
$${wrong}! \\ $$
Answered by mr W last updated on 07/Nov/24
Σ_(r=1) ^n (1/2^r )=(((1/2)(1−(1/2^n )))/(1−(1/2)))=1−(1/2^n )<1, but >0  ⇒[Σ_(r=1) ^n (1/2^r )]=0  ⇒lim_(n→∞) [Σ_(r=1) ^n (1/2^r )]=lim_(n→∞) 0=0 ✓
$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{r}} }=\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{n}} }<\mathrm{1},\:{but}\:>\mathrm{0} \\ $$$$\Rightarrow\left[\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{r}} }\right]=\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{r}} }\right]=\underset{{n}\rightarrow\infty} {\mathrm{lim}0}=\mathrm{0}\:\checkmark \\ $$
Commented by issac last updated on 07/Nov/24
Damn i was wrong
$${Damn}\:{i}\:{was}\:{wrong} \\ $$
Commented by universe last updated on 07/Nov/24
thanks sir
$${thanks}\:{sir} \\ $$
Answered by Berbere last updated on 07/Nov/24
[x]<x  ⇒0≤[Σ_(r=1) ^n (1/2^r )]≤Σ_(r=1) ^n (1/2^r )=1−((1/2))^n <1  ⇒∀n∈N  [Σ(1/2^r )]=0
$$\left[{x}\right]<{x} \\ $$$$\Rightarrow\mathrm{0}\leqslant\left[\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{r}} }\right]\leqslant\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{r}} }=\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} <\mathrm{1} \\ $$$$\Rightarrow\forall{n}\in\mathbb{N}\:\:\left[\Sigma\frac{\mathrm{1}}{\mathrm{2}^{{r}} }\right]=\mathrm{0} \\ $$
Commented by universe last updated on 07/Nov/24
thank you so much sir
$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *