Question Number 213519 by RojaTaniya last updated on 07/Nov/24
Answered by mr W last updated on 07/Nov/24
$$\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{{x}} \\ $$$$\mathrm{tan}\:\left(\alpha+\beta\right)=\frac{\mathrm{3}}{{x}} \\ $$$$\mathrm{tan}\:\left(\alpha+\alpha+\beta\right)=\frac{\mathrm{6}}{{x}} \\ $$$$\frac{\mathrm{6}}{{x}}=\frac{\frac{\mathrm{1}}{{x}}+\frac{\mathrm{3}}{{x}}}{\mathrm{1}−\frac{\mathrm{1}}{{x}}×\frac{\mathrm{3}}{{x}}}=\frac{\mathrm{4}{x}}{{x}^{\mathrm{2}} −\mathrm{3}} \\ $$$${x}^{\mathrm{2}} =\mathrm{9}\:\Rightarrow{x}=\mathrm{3} \\ $$
Commented by RojaTaniya last updated on 07/Nov/24
$$\:{Sir},\:{perferct}.\:{Thanks}. \\ $$
Answered by A5T last updated on 07/Nov/24
$$\left[{ABC}\right]=\frac{\mathrm{3}{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}\:}{sin}\alpha}{\mathrm{2}}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{9}}×\sqrt{{x}^{\mathrm{2}} +\mathrm{36}}\:{sin}\alpha}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{9}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)=\left({x}^{\mathrm{2}} +\mathrm{9}\right)\left({x}^{\mathrm{2}} +\mathrm{36}\right) \\ $$$$\Rightarrow\mathrm{9}{x}^{\mathrm{4}} +\mathrm{9}{x}^{\mathrm{2}} ={x}^{\mathrm{4}} +\mathrm{45}{x}^{\mathrm{2}} +\mathrm{324}\Rightarrow\mathrm{2}{x}^{\mathrm{4}} −\mathrm{9}{x}^{\mathrm{2}} −\mathrm{81}=\mathrm{0} \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} −\mathrm{9}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{9}\right)=\mathrm{0}\Rightarrow{x}^{\mathrm{2}} =\mathrm{9}\Rightarrow{x}=\mathrm{3} \\ $$