Menu Close

0-lt-c-lt-1-such-that-the-recursive-sequence-a-n-defined-by-setting-a-1-c-2-a-n-1-1-2-c-a-n-2-for-n-N-monotonic-and-convergent-




Question Number 213548 by universe last updated on 08/Nov/24
0<c<1 such that the recursive sequence  {a_n } defined by setting    a_(1 ) = (c/2)  , a_(n+1)  = (1/2)(c+a_n ^2 )  for n∈ N  monotonic and convergent
0<c<1suchthattherecursivesequence{an}definedbysettinga1=c2,an+1=12(c+an2)fornNmonotonicandconvergent
Answered by Berbere last updated on 10/Nov/24
Let f(z)=(1/2)(c+z^2 ) z∈R_+ ;f′(z)=z≥0  claim ∀n∈N  a_n ∈[0,1]  a_n =fof.....f(a_1 )  n timez  f[0,1]=[f(0),f(1)]=[(c/2),((1+c)/2)] ⊆[0,1];0≤c≤1  ⇒fo.....f([0,1])⊆[0,1]⇒∀n∈N a_n ∈[0,1]  a_2 =(c/2)[1+(c/4)]≥(c/2)⇒a_2 ≥a_1   since f increse  ⇒∀n∈N a_(n+1) ≥a_n ⇒a_n  increase bounded cv to fix pint of f  l=lim_(n→∞) a_n  is Solution of f(x)=x⇔x^2 −2x+c=0  x=1+(√(1−c))>1;1−(√(1−c))  l=1−(√(1−c))
Letf(z)=12(c+z2)zR+;f(z)=z0claimnNan[0,1]an=fof..f(a1)ntimezf[0,1]=[f(0),f(1)]=[c2,1+c2][0,1];0c1fo..f([0,1])[0,1]nNan[0,1]a2=c2[1+c4]c2a2a1sincefincresenNan+1ananincreaseboundedcvtofixpintoffl=limnanisSolutionoff(x)=xx22x+c=0x=1+1c>1;11cl=11c
Commented by universe last updated on 10/Nov/24
nice solution sir   thank you so much
nicesolutionsirthankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *