Menu Close

f-Z-R-such-that-f-x-f-y-f-x-y-f-x-y-f-x-




Question Number 213564 by tri26112004 last updated on 09/Nov/24
f: Z→R such that  f(x).f(y)=f(x+y)+f(x−y)  ⇒f(x)=¿
$${f}:\:{Z}\rightarrow{R}\:{such}\:{that} \\ $$$${f}\left({x}\right).{f}\left({y}\right)={f}\left({x}+{y}\right)+{f}\left({x}−{y}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=¿ \\ $$
Commented by mr W last updated on 09/Nov/24
f(x)=2 cos x
$${f}\left({x}\right)=\mathrm{2}\:\mathrm{cos}\:{x} \\ $$
Commented by tri26112004 last updated on 09/Nov/24
your solution¿
$${your}\:{solution}¿ \\ $$
Commented by mr W last updated on 09/Nov/24
i don′t know if there are other   solutions.
$${i}\:{don}'{t}\:{know}\:{if}\:{there}\:{are}\:{other}\: \\ $$$${solutions}. \\ $$
Commented by Ghisom last updated on 09/Nov/24
I think f(x) can be any function with  f(0)=2∧f(x)=f(−x)
$$\mathrm{I}\:\mathrm{think}\:{f}\left({x}\right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{any}\:\mathrm{function}\:\mathrm{with} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{2}\wedge{f}\left({x}\right)={f}\left(−{x}\right) \\ $$
Commented by mr W last updated on 09/Nov/24
if you were right, then f(x)=2+x^2   is also a solution. but it isn′t!
$${if}\:{you}\:{were}\:{right},\:{then}\:{f}\left({x}\right)=\mathrm{2}+{x}^{\mathrm{2}} \\ $$$${is}\:{also}\:{a}\:{solution}.\:{but}\:{it}\:{isn}'{t}! \\ $$
Commented by Ghisom last updated on 10/Nov/24
you′re right
$$\mathrm{you}'\mathrm{re}\:\mathrm{right} \\ $$
Answered by issac last updated on 09/Nov/24
weyl−wigner transform  Φ[f(u,v)]=(1/(4π^2 ))∫∫_(S∈R^2 )   dudv f(u,v)e^(iuQ+ivP)   set R=(−∞,∞)  and double integrals interval  R^2  mean X×Y=(−∞,∞)×(−∞∞)
$$\mathrm{weyl}−\mathrm{wigner}\:\mathrm{transform} \\ $$$$\Phi\left[{f}\left({u},{v}\right)\right]=\frac{\mathrm{1}}{\mathrm{4}\pi^{\mathrm{2}} }\underset{\mathcal{S}\in\mathbb{R}^{\mathrm{2}} } {\int\int}\:\:\mathrm{d}{u}\mathrm{d}{v}\:{f}\left({u},{v}\right){e}^{\boldsymbol{{i}}{uQ}+\boldsymbol{{i}}{vP}} \\ $$$$\mathrm{set}\:\mathbb{R}=\left(−\infty,\infty\right) \\ $$$$\mathrm{and}\:\mathrm{double}\:\mathrm{integrals}\:\mathrm{interval} \\ $$$$\mathbb{R}^{\mathrm{2}} \:\mathrm{mean}\:{X}×{Y}=\left(−\infty,\infty\right)×\left(−\infty\infty\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *