Menu Close

Question-213573




Question Number 213573 by mr W last updated on 09/Nov/24
Commented by mr W last updated on 09/Nov/24
find r=?
$${find}\:{r}=? \\ $$
Commented by ajfour last updated on 09/Nov/24
Sir, this we hsd solved before.
Commented by mr W last updated on 09/Nov/24
i′ve forgotten sir.
$${i}'{ve}\:{forgotten}\:{sir}. \\ $$
Answered by mr W last updated on 09/Nov/24
Commented by mr W last updated on 09/Nov/24
R=((√(a^2 +b^2 −2ab cos α))/(2 sin α))  P((a/2), (√(R^2 −(a^2 /4))))  Q((r/(tan (α/2))), r)  PQ=R−r  (√(((a/2)−(r/(tan (α/2))))^2 +((√(R^2 −(a^2 /4)))−r)^2 ))=R−r  (r/(tan^2  (α/2)))=(a/(tan (α/2)))+2((√(R^2 −(a^2 /4)))−R)  ⇒r=a tan (α/2)+2((√(R^2 −(a^2 /4)))−R)tan^2  (α/2)
$${R}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\alpha}}{\mathrm{2}\:\mathrm{sin}\:\alpha} \\ $$$${P}\left(\frac{{a}}{\mathrm{2}},\:\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right) \\ $$$${Q}\left(\frac{{r}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}},\:{r}\right) \\ $$$${PQ}={R}−{r} \\ $$$$\sqrt{\left(\frac{{a}}{\mathrm{2}}−\frac{{r}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}\right)^{\mathrm{2}} +\left(\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}−{r}\right)^{\mathrm{2}} }={R}−{r} \\ $$$$\frac{{r}}{\mathrm{tan}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}}=\frac{{a}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}+\mathrm{2}\left(\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}−{R}\right) \\ $$$$\Rightarrow{r}={a}\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}+\mathrm{2}\left(\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}−{R}\right)\mathrm{tan}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 10/Nov/24
If smaller circle is small, then  (R−r)^2 =((r/(tan (α/2)))−(a/2))^2 +(r+(√(R^2 −(a^2 /4))))^2   ⇒ r=tan^2 ((α/2)){(a/(tan (α/2)−2))−2R−2(√(R^2 −(a^2 /4))) }
$${If}\:{smaller}\:{circle}\:{is}\:{small},\:{then} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} =\left(\frac{{r}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({r}+\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{r}=\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\left\{\frac{{a}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}−\mathrm{2}}−\mathrm{2}{R}−\mathrm{2}\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *