Menu Close

please-prove-1-x-x-1-




Question Number 213725 by zakirullah last updated on 14/Nov/24
please prove (1/x) = x^(−1)
$${please}\:{prove}\:\frac{\mathrm{1}}{{x}}\:=\:{x}^{−\mathrm{1}} \\ $$
Answered by Rasheed.Sindhi last updated on 14/Nov/24
     (1/x)=(x^0 /x^1 )=x^(0−1) =x^(−1)
$$\:\:\:\:\:\frac{\mathrm{1}}{{x}}=\frac{{x}^{\mathrm{0}} }{{x}^{\mathrm{1}} }={x}^{\mathrm{0}−\mathrm{1}} ={x}^{−\mathrm{1}} \\ $$
Answered by Rasheed.Sindhi last updated on 14/Nov/24
x^(−1) =x^(0−1) =(x^0 /x^1 )=(1/x)
$${x}^{−\mathrm{1}} ={x}^{\mathrm{0}−\mathrm{1}} =\frac{{x}^{\mathrm{0}} }{{x}^{\mathrm{1}} }=\frac{\mathrm{1}}{{x}} \\ $$
Commented by zakirullah last updated on 15/Nov/24
very true but some students asked about   the power or exponent that why they change its  sign when it go from nomerator to denominator and  from denominator to nomerator?  please give me any suggistion.
$${very}\:{true}\:{but}\:{some}\:{students}\:{asked}\:{about}\: \\ $$$${the}\:{power}\:{or}\:{exponent}\:{that}\:{why}\:{they}\:{change}\:{its} \\ $$$${sign}\:{when}\:{it}\:{go}\:{from}\:{nomerator}\:{to}\:{denominator}\:{and} \\ $$$${from}\:{denominator}\:{to}\:{nomerator}? \\ $$$${please}\:{give}\:{me}\:{any}\:{suggistion}. \\ $$
Commented by Rasheed.Sindhi last updated on 15/Nov/24
(1)  a^0 =1 (definition)  (1/a)=((1.a^(−1) )/(a.a^(−1) ))   (numerator and denominator may   be multiplied by same number)      =(a^(−1) /a^(1+(−1)) )=(a^(−1) /a^0 )=(a^(−1) /1)=a^(−1)   (2)   { ((a^x ×a^y =a^(x+y) )),(((a^x /a^y )=a^(x−y)  (∗))) :}(As Rules)  1=(a/a)=a^(1−1) =a^0 ⇒a^0 =1  Now,  (1/a^n )=(a^0 /a^n )=a^(0−n) =a^(−n)   (∗) a^x ×a^y =a^(x+y) ⇒a^x =(a^(x+y) /a^y )=a^((x+y)−y)        ⇒(a^m /a^n )=a^(m−n)
$$\left(\mathrm{1}\right) \\ $$$${a}^{\mathrm{0}} =\mathrm{1}\:\left({definition}\right) \\ $$$$\frac{\mathrm{1}}{{a}}=\frac{\mathrm{1}.{a}^{−\mathrm{1}} }{{a}.{a}^{−\mathrm{1}} } \\ $$$$\:\left({numerator}\:{and}\:{denominator}\:{may}\right. \\ $$$$\left.\:{be}\:{multiplied}\:{by}\:{same}\:{number}\right) \\ $$$$\:\:\:\:=\frac{{a}^{−\mathrm{1}} }{{a}^{\mathrm{1}+\left(−\mathrm{1}\right)} }=\frac{{a}^{−\mathrm{1}} }{{a}^{\mathrm{0}} }=\frac{{a}^{−\mathrm{1}} }{\mathrm{1}}={a}^{−\mathrm{1}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\begin{cases}{{a}^{{x}} ×{a}^{{y}} ={a}^{{x}+{y}} }\\{\frac{{a}^{{x}} }{{a}^{{y}} }={a}^{{x}−{y}} \:\left(\ast\right)}\end{cases}\left({As}\:{Rules}\right) \\ $$$$\mathrm{1}=\frac{{a}}{{a}}={a}^{\mathrm{1}−\mathrm{1}} ={a}^{\mathrm{0}} \Rightarrow{a}^{\mathrm{0}} =\mathrm{1} \\ $$$${Now}, \\ $$$$\frac{\mathrm{1}}{{a}^{{n}} }=\frac{{a}^{\mathrm{0}} }{{a}^{{n}} }={a}^{\mathrm{0}−{n}} ={a}^{−{n}} \\ $$$$\left(\ast\right)\:{a}^{{x}} ×{a}^{{y}} ={a}^{{x}+{y}} \Rightarrow{a}^{{x}} =\frac{{a}^{{x}+{y}} }{{a}^{{y}} }={a}^{\left({x}+{y}\right)−{y}} \\ $$$$\:\:\:\:\:\Rightarrow\frac{{a}^{{m}} }{{a}^{{n}} }={a}^{{m}−{n}} \\ $$
Answered by Ghisom last updated on 14/Nov/24
we define the symbol a^n   a^n :=a×a×a×..._(n times)   a×b=c ⇔ a=b÷c  ⇒ a^m ×a^n =a^(m+n)  ⇔ a^(m+n) ÷a^n =a^m   this can be written as  a^(m+n) ÷a^n =a^((m+n)−n)   generally  a^m ÷a^n =a^(m−n)   what happens when m=n?  a^m ÷a^m =a^(m−m) =a^0   but a^m ÷a^m =1 ⇒ a^0 =1  what happens when m<n?  let n=m+k  a^m ÷a^(m+k) =a^(m−(m+k)) =a^(−k)   an example:  2^3 ÷2^5 =2^(−2)  (?)  2^3 ÷2^5 =8÷32=(1/4)=(1/2^2 )  ⇒ 2^(−2) =(1/2^2 )  ⇒  a^(−m) =(1/a^m )
$$\mathrm{we}\:\mathrm{define}\:\mathrm{the}\:\mathrm{symbol}\:{a}^{{n}} \\ $$$${a}^{{n}} :=\underset{{n}\:\mathrm{times}} {\underbrace{{a}×{a}×{a}×…}} \\ $$$${a}×{b}={c}\:\Leftrightarrow\:{a}={b}\boldsymbol{\div}{c} \\ $$$$\Rightarrow\:{a}^{{m}} ×{a}^{{n}} ={a}^{{m}+{n}} \:\Leftrightarrow\:{a}^{{m}+{n}} \boldsymbol{\div}{a}^{{n}} ={a}^{{m}} \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as} \\ $$$${a}^{{m}+{n}} \boldsymbol{\div}{a}^{{n}} ={a}^{\left({m}+{n}\right)−{n}} \\ $$$$\mathrm{generally} \\ $$$${a}^{{m}} \boldsymbol{\div}{a}^{{n}} ={a}^{{m}−{n}} \\ $$$$\mathrm{what}\:\mathrm{happens}\:\mathrm{when}\:{m}={n}? \\ $$$${a}^{{m}} \boldsymbol{\div}{a}^{{m}} ={a}^{{m}−{m}} ={a}^{\mathrm{0}} \\ $$$$\mathrm{but}\:{a}^{{m}} \boldsymbol{\div}{a}^{{m}} =\mathrm{1}\:\Rightarrow\:{a}^{\mathrm{0}} =\mathrm{1} \\ $$$$\mathrm{what}\:\mathrm{happens}\:\mathrm{when}\:{m}<{n}? \\ $$$$\mathrm{let}\:{n}={m}+{k} \\ $$$${a}^{{m}} \boldsymbol{\div}{a}^{{m}+{k}} ={a}^{{m}−\left({m}+{k}\right)} ={a}^{−{k}} \\ $$$$\mathrm{an}\:\mathrm{example}: \\ $$$$\mathrm{2}^{\mathrm{3}} \boldsymbol{\div}\mathrm{2}^{\mathrm{5}} =\mathrm{2}^{−\mathrm{2}} \:\left(?\right) \\ $$$$\mathrm{2}^{\mathrm{3}} \boldsymbol{\div}\mathrm{2}^{\mathrm{5}} =\mathrm{8}\boldsymbol{\div}\mathrm{32}=\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{2}^{−\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} } \\ $$$$\Rightarrow \\ $$$${a}^{−{m}} =\frac{\mathrm{1}}{{a}^{{m}} } \\ $$
Commented by zakirullah last updated on 15/Nov/24
well−done sir G
$${well}−{done}\:{sir}\:{G} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *