Menu Close

m-n-Z-2m-2-n-2-mn-54-1-m-n-2-m-n-




Question Number 213751 by hardmath last updated on 15/Nov/24
m ; n ∈ Z_+   2m^2  + n^2  − mn = 54    1. (m;n)=?  2. (m;n)=?  ................
$$\mathrm{m}\:;\:\mathrm{n}\:\in\:\mathbb{Z}_{+} \\ $$$$\mathrm{2m}^{\mathrm{2}} \:+\:\mathrm{n}^{\mathrm{2}} \:−\:\mathrm{mn}\:=\:\mathrm{54} \\ $$$$ \\ $$$$\mathrm{1}.\:\left(\mathrm{m};\mathrm{n}\right)=? \\ $$$$\mathrm{2}.\:\left(\mathrm{m};\mathrm{n}\right)=? \\ $$$$……………. \\ $$
Commented by hardmath last updated on 15/Nov/24
a) 1     b) 2     c) 3     d) 4     e) 5
$$\left.\mathrm{a}\left.\right)\left.\:\left.\mathrm{1}\left.\:\:\:\:\:\mathrm{b}\right)\:\mathrm{2}\:\:\:\:\:\mathrm{c}\right)\:\mathrm{3}\:\:\:\:\:\mathrm{d}\right)\:\mathrm{4}\:\:\:\:\:\mathrm{e}\right)\:\mathrm{5} \\ $$
Answered by Ghisom last updated on 15/Nov/24
no solution for m, n ∈Z^+
$$\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{m},\:{n}\:\in\mathbb{Z}^{+} \\ $$
Commented by hardmath last updated on 15/Nov/24
m;n∈N
$$\mathrm{m};\mathrm{n}\in\mathbb{N} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *