Question Number 213745 by efronzo1 last updated on 15/Nov/24
Answered by mnjuly1970 last updated on 16/Nov/24
$$\:\left(\mathrm{M}{edian}\:{theorem}\:\right):\:\:\:\:\:\:\mathrm{7}^{\mathrm{2}} \:+\:{R}^{\mathrm{2}} =\:\mathrm{2}\left(\sqrt{\mathrm{14}}\:\right)^{\mathrm{2}} \:+\:\frac{\left(\mathrm{2}{R}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{49}\:+\:{R}^{\mathrm{2}} \:=\:\mathrm{28}\:+\:\mathrm{2}{R}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\mathrm{21}\:=\:{R}^{\mathrm{2}} \:\Rightarrow\:{R}=\:\sqrt{\mathrm{21}}\:\:\:\:\:\:\:\blacksquare \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Answered by golsendro last updated on 15/Nov/24
$$\:\angle\:\mathrm{AOC}\:=\:\alpha \\ $$$$\:\:\left(\mathrm{1}\right)\:\mathrm{cos}\:\alpha\:=\:\frac{\mathrm{2R}^{\mathrm{2}} −\mathrm{14}}{\mathrm{2R}^{\mathrm{2}} } \\ $$$$\:\left(\mathrm{2}\right)\:\mathrm{cos}\:\alpha\:=\:\frac{\mathrm{5R}^{\mathrm{2}} −\mathrm{49}}{\mathrm{4R}^{\mathrm{2}} } \\ $$$$\:\:\Rightarrow\:\frac{\mathrm{5R}^{\mathrm{2}} −\mathrm{49}}{\mathrm{2}}\:=\:\mathrm{2R}^{\mathrm{2}} −\mathrm{14} \\ $$$$\:\:\:\:\:\:\:\mathrm{R}^{\mathrm{2}} \:=\:\mathrm{21}\Rightarrow\mathrm{R}=\sqrt{\mathrm{21}} \\ $$
Answered by mr W last updated on 15/Nov/24
$$\mathrm{4}×\left(\sqrt{\mathrm{14}}\right)^{\mathrm{2}} =\mathrm{2}×\mathrm{7}^{\mathrm{2}} +\mathrm{2}×{R}^{\mathrm{2}} −\left(\mathrm{2}{R}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{R}=\sqrt{\mathrm{7}^{\mathrm{2}} −\mathrm{2}×\mathrm{14}}=\sqrt{\mathrm{21}} \\ $$
Answered by A5T last updated on 16/Nov/24
$${R}^{\mathrm{2}} +\mathrm{14}−\mathrm{2}{R}\sqrt{\mathrm{14}}{cosACO}={R}^{\mathrm{2}} \Rightarrow{cosACO}=\frac{\mathrm{14}}{\mathrm{2}{R}\sqrt{\mathrm{14}}} \\ $$$${R}^{\mathrm{2}} +\mathrm{14}+\mathrm{2}{R}\sqrt{\mathrm{14}}{cosACO}=\mathrm{49}\Rightarrow{cosACO}=\frac{\mathrm{35}−{R}^{\mathrm{2}} }{\mathrm{2}{R}\sqrt{\mathrm{14}}} \\ $$$$\Rightarrow\mathrm{35}−{R}^{\mathrm{2}} =\mathrm{14}\Rightarrow{R}=\sqrt{\mathrm{21}} \\ $$
Answered by A5T last updated on 16/Nov/24
$${R}^{\mathrm{2}} ×\mathrm{2}{R}+\left(\sqrt{\mathrm{14}}\right)^{\mathrm{2}} \left(\mathrm{2}{R}\right)={R}^{\mathrm{2}} ×{R}+\mathrm{7}^{\mathrm{2}} ×{R} \\ $$$$\Rightarrow\mathrm{2}{R}^{\mathrm{2}} +\mathrm{28}={R}^{\mathrm{2}} +\mathrm{49}\Rightarrow{R}=\sqrt{\mathrm{21}} \\ $$