Menu Close

So-Weird-0-J-t-e-st-dt-s-s-2-1-s-2-1-J-t-1-J-t-0-J-t-e-st-dt-1-s-s-2-1-s-2-1-is-true




Question Number 213790 by issac last updated on 16/Nov/24
So Weird......  ∫_0 ^( ∞) J_ν (t)e^(−st) dt=(((s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1))))   J_(−ν) (t)=(−1)^ν J_ν (t)    ∫_0 ^( ∞)  J_(−ν) (t)e^(−st) dt=(((−1)^ν (s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1)))) is true  But ∫_0 ^( ∞)  J_(−ν) (t)e^(−st) dt is not (((s+(√(s^2 +1)))^ν )/( (√(s^2 +1))))  why....? can you explain   why Blue equation is not true....
$$\mathrm{So}\:\mathrm{Weird}…… \\ $$$$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$$${J}_{−\nu} \left({t}\right)=\left(−\mathrm{1}\right)^{\nu} {J}_{\nu} \left({t}\right)\:\: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left(−\mathrm{1}\right)^{\nu} \left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{But}\:\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}\:\mathrm{is}\:\mathrm{not}\:\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{why}….?\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\: \\ $$$$\mathrm{why}\:\mathrm{Blue}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{not}\:\mathrm{true}…. \\ $$
Commented by Frix last updated on 16/Nov/24
I know nothing about these functions but  this is obvious, we only need this general  rule of integration: ∫af(x)dx=a∫f(x)dx  1. ∫_0 ^∞ J_v (t)e^(−st) dt=(((s+(√(s^2 +1)))^(−v) )/( (√(s^2 +1))))  2. J_(−v) (t)=(−1)^v J_v (t)  ⇒  ∫_0 ^∞ J_(−v) (t)e^(−st) dt=(−1)^v ∫_0 ^∞ J_v (t)e^(−st) dt=  =(((−1)^v (s+(√(s^2 +1)))^(−v) )/( (√(s^2 +1))))≠(((s+(√(s^2 +1)))^v )/( (√(s^2 +1))))  I don′t see the problem...
$$\mathrm{I}\:\mathrm{know}\:\mathrm{nothing}\:\mathrm{about}\:\mathrm{these}\:\mathrm{functions}\:\mathrm{but} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{obvious},\:\mathrm{we}\:\mathrm{only}\:\mathrm{need}\:\mathrm{this}\:\mathrm{general} \\ $$$$\mathrm{rule}\:\mathrm{of}\:\mathrm{integration}:\:\int{af}\left({x}\right){dx}={a}\int{f}\left({x}\right){dx} \\ $$$$\mathrm{1}.\:\underset{\mathrm{0}} {\overset{\infty} {\int}}{J}_{{v}} \left({t}\right)\mathrm{e}^{−{st}} {dt}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−{v}} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{2}.\:{J}_{−{v}} \left({t}\right)=\left(−\mathrm{1}\right)^{{v}} {J}_{{v}} \left({t}\right) \\ $$$$\Rightarrow \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{J}_{−{v}} \left({t}\right)\mathrm{e}^{−{st}} {dt}=\left(−\mathrm{1}\right)^{{v}} \underset{\mathrm{0}} {\overset{\infty} {\int}}{J}_{{v}} \left({t}\right)\mathrm{e}^{−{st}} {dt}= \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{v}} \left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−{v}} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\neq\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{{v}} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{see}\:\mathrm{the}\:\mathrm{problem}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *