Question Number 213838 by ajfour last updated on 18/Nov/24
Commented by ajfour last updated on 18/Nov/24
$${A}\:{solid}\:{ball}\:{is}\:{released}\:{over}\:{a}\:{fixed} \\ $$$${cylindrical}\:{wedge}\:{as}\:{shown}.\:{Friction} \\ $$$${is}\:{sufficient}.\:{If}\:{just}\:{after}\:{the}\:{ball} \\ $$$${leaves}\:{the}\:{curved}\:{surface}\:{due}\:{to} \\ $$$${Normal}\:{reaction}\:{vanishing},\:{it}\: \\ $$$${thereupon}\:{touches}\:{the}\:{ground}\:{below} \\ $$$${then}\:{find}\:{the}\:{radius}\:{ratio}\:{r}/{R}. \\ $$
Answered by mr W last updated on 18/Nov/24
Commented by mr W last updated on 20/Nov/24
$${rotation}\:{of}\:{ball} \\ $$$$\phi=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\theta \\ $$$$\frac{{d}\phi}{{dt}}=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega\:{with}\:\omega=\frac{{d}\theta}{{dt}} \\ $$$$\alpha=\frac{{d}^{\mathrm{2}} \phi}{{dt}^{\mathrm{2}} }=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega×\frac{{d}\omega}{{d}\theta} \\ $$$$\left(\frac{\mathrm{2}{mr}^{\mathrm{2}} }{\mathrm{5}}+{mr}^{\mathrm{2}} \right)×\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega×\frac{{d}\omega}{{d}\theta}={mgr}\:\mathrm{sin}\:\theta \\ $$$$\omega{d}\omega=\frac{\mathrm{5}{g}}{\mathrm{7}\left({r}+{R}\right)}\:\mathrm{sin}\:\theta\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\omega} \omega{d}\omega=\frac{\mathrm{5}{g}}{\mathrm{7}\left({r}+{R}\right)}\:\int_{\mathrm{0}} ^{\theta} \mathrm{sin}\:\theta\:{d}\theta \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{5}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{10}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$$−+−+−+−+−+−+− \\ $$$${alternatively}: \\ $$$${mg}\left({r}+{R}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}{mr}^{\mathrm{2}} }{\mathrm{5}}\right)\left(\mathrm{1}+\frac{{R}}{{r}}\right)^{\mathrm{2}} \omega^{\mathrm{2}} +\frac{{m}}{\mathrm{2}}×{r}^{\mathrm{2}} ×\left(\mathrm{1}+\frac{{R}}{{r}}\right)^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$$\mathrm{2}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\frac{\mathrm{7}}{\mathrm{5}}\left({r}+{R}\right)\omega^{\mathrm{2}} \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{10}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$$−+−+−+−+−+−+− \\ $$$${mg}\:\mathrm{cos}\:\theta−{N}=\frac{{m}}{{r}+{R}}×\left(\mathrm{1}+\frac{{R}}{{r}}\right)^{\mathrm{2}} {r}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$${N}={mg}\:\mathrm{cos}\:\theta−{m}\left({r}+{R}\right)×\frac{\mathrm{10}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$${N}=\frac{\left(\mathrm{17}\:\mathrm{cos}\:\theta−\mathrm{10}\right){mg}}{\mathrm{7}} \\ $$$${N}=\mathrm{0}\:\Rightarrow\mathrm{17}\:\mathrm{cos}\:\theta−\mathrm{10}=\mathrm{0}\:\Rightarrow\mathrm{cos}\:\theta=\frac{\mathrm{10}}{\mathrm{17}} \\ $$$$\Rightarrow\theta=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{10}}{\mathrm{17}}\approx\mathrm{53}.\mathrm{97}° \\ $$$$\theta=\varphi\: \\ $$$$\Rightarrow\mathrm{cos}\:\varphi=\mathrm{cos}\:\theta=\frac{\mathrm{10}}{\mathrm{17}} \\ $$$$\frac{{r}}{{r}+{R}}=\frac{\mathrm{10}}{\mathrm{17}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{1}}{\frac{\mathrm{17}}{\mathrm{10}}−\mathrm{1}}=\frac{\mathrm{10}}{\mathrm{7}}\:\checkmark \\ $$
Commented by mr W last updated on 18/Nov/24
$${angle}\:\theta\:{at}\:{which}\:{the}\:{ball}\:{is}\:{losing} \\ $$$${the}\:{contact}\:{with}\:{the}\:{wedge}\:{is}\: \\ $$$${independent}\:{from}\:{their}\:{radii}! \\ $$
Commented by ajfour last updated on 18/Nov/24
$${loss}\:{in}\:{G}.{P}.{E}.={gain}\:{in}\:{total}\:{K}.{E}. \\ $$$$\:{mgR}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{5}}{mr}^{\mathrm{2}} \right)\omega^{\mathrm{2}} \\ $$$${mg}\mathrm{cos}\:\theta={m}\omega^{\mathrm{2}} {r}^{\mathrm{2}} /\left({R}+{r}\right) \\ $$$${now}\:{dividing} \\ $$$$\frac{{R}}{\mathrm{cos}\:\theta}=\frac{\mathrm{7}}{\mathrm{10}}\left({R}+{r}\right) \\ $$$${now}\:\:\mathrm{cos}\:\theta=\frac{{r}}{{R}+{r}} \\ $$$$\Rightarrow\:\:\frac{{R}}{{r}}=\frac{\mathrm{7}}{\mathrm{10}}\:\:\bigstar \\ $$