Menu Close

Question-213838




Question Number 213838 by ajfour last updated on 18/Nov/24
Commented by ajfour last updated on 18/Nov/24
A solid ball is released over a fixed  cylindrical wedge as shown. Friction  is sufficient. If just after the ball  leaves the curved surface due to  Normal reaction vanishing, it   thereupon touches the ground below  then find the radius ratio r/R.
$${A}\:{solid}\:{ball}\:{is}\:{released}\:{over}\:{a}\:{fixed} \\ $$$${cylindrical}\:{wedge}\:{as}\:{shown}.\:{Friction} \\ $$$${is}\:{sufficient}.\:{If}\:{just}\:{after}\:{the}\:{ball} \\ $$$${leaves}\:{the}\:{curved}\:{surface}\:{due}\:{to} \\ $$$${Normal}\:{reaction}\:{vanishing},\:{it}\: \\ $$$${thereupon}\:{touches}\:{the}\:{ground}\:{below} \\ $$$${then}\:{find}\:{the}\:{radius}\:{ratio}\:{r}/{R}. \\ $$
Answered by mr W last updated on 18/Nov/24
Commented by mr W last updated on 20/Nov/24
rotation of ball  φ=(1+(R/r))θ  (dφ/dt)=(1+(R/r))ω with ω=(dθ/dt)  α=(d^2 φ/dt^2 )=(1+(R/r))ω×(dω/dθ)  (((2mr^2 )/5)+mr^2 )×(1+(R/r))ω×(dω/dθ)=mgr sin θ  ωdω=((5g)/(7(r+R))) sin θ dθ  ∫_0 ^ω ωdω=((5g)/(7(r+R))) ∫_0 ^θ sin θ dθ  (ω^2 /2)=((5g(1−cos θ))/(7(r+R)))  ⇒ω^2 =((10g(1−cos θ))/(7(r+R)))  −+−+−+−+−+−+−  alternatively:  mg(r+R)(1−cos θ)=(1/2)(((2mr^2 )/5))(1+(R/r))^2 ω^2 +(m/2)×r^2 ×(1+(R/r))^2 ω^2   2g(1−cos θ)=(7/5)(r+R)ω^2   ⇒ω^2 =((10g(1−cos θ))/(7(r+R)))  −+−+−+−+−+−+−  mg cos θ−N=(m/(r+R))×(1+(R/r))^2 r^2 ω^2   N=mg cos θ−m(r+R)×((10g(1−cos θ))/(7(r+R)))  N=(((17 cos θ−10)mg)/7)  N=0 ⇒17 cos θ−10=0 ⇒cos θ=((10)/(17))  ⇒θ=cos^(−1) ((10)/(17))≈53.97°  θ=ϕ   ⇒cos ϕ=cos θ=((10)/(17))  (r/(r+R))=((10)/(17))  ⇒(r/R)=(1/(((17)/(10))−1))=((10)/7) ✓
$${rotation}\:{of}\:{ball} \\ $$$$\phi=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\theta \\ $$$$\frac{{d}\phi}{{dt}}=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega\:{with}\:\omega=\frac{{d}\theta}{{dt}} \\ $$$$\alpha=\frac{{d}^{\mathrm{2}} \phi}{{dt}^{\mathrm{2}} }=\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega×\frac{{d}\omega}{{d}\theta} \\ $$$$\left(\frac{\mathrm{2}{mr}^{\mathrm{2}} }{\mathrm{5}}+{mr}^{\mathrm{2}} \right)×\left(\mathrm{1}+\frac{{R}}{{r}}\right)\omega×\frac{{d}\omega}{{d}\theta}={mgr}\:\mathrm{sin}\:\theta \\ $$$$\omega{d}\omega=\frac{\mathrm{5}{g}}{\mathrm{7}\left({r}+{R}\right)}\:\mathrm{sin}\:\theta\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\omega} \omega{d}\omega=\frac{\mathrm{5}{g}}{\mathrm{7}\left({r}+{R}\right)}\:\int_{\mathrm{0}} ^{\theta} \mathrm{sin}\:\theta\:{d}\theta \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{5}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{10}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$$−+−+−+−+−+−+− \\ $$$${alternatively}: \\ $$$${mg}\left({r}+{R}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}{mr}^{\mathrm{2}} }{\mathrm{5}}\right)\left(\mathrm{1}+\frac{{R}}{{r}}\right)^{\mathrm{2}} \omega^{\mathrm{2}} +\frac{{m}}{\mathrm{2}}×{r}^{\mathrm{2}} ×\left(\mathrm{1}+\frac{{R}}{{r}}\right)^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$$\mathrm{2}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\frac{\mathrm{7}}{\mathrm{5}}\left({r}+{R}\right)\omega^{\mathrm{2}} \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{10}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$$−+−+−+−+−+−+− \\ $$$${mg}\:\mathrm{cos}\:\theta−{N}=\frac{{m}}{{r}+{R}}×\left(\mathrm{1}+\frac{{R}}{{r}}\right)^{\mathrm{2}} {r}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$${N}={mg}\:\mathrm{cos}\:\theta−{m}\left({r}+{R}\right)×\frac{\mathrm{10}{g}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{7}\left({r}+{R}\right)} \\ $$$${N}=\frac{\left(\mathrm{17}\:\mathrm{cos}\:\theta−\mathrm{10}\right){mg}}{\mathrm{7}} \\ $$$${N}=\mathrm{0}\:\Rightarrow\mathrm{17}\:\mathrm{cos}\:\theta−\mathrm{10}=\mathrm{0}\:\Rightarrow\mathrm{cos}\:\theta=\frac{\mathrm{10}}{\mathrm{17}} \\ $$$$\Rightarrow\theta=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{10}}{\mathrm{17}}\approx\mathrm{53}.\mathrm{97}° \\ $$$$\theta=\varphi\: \\ $$$$\Rightarrow\mathrm{cos}\:\varphi=\mathrm{cos}\:\theta=\frac{\mathrm{10}}{\mathrm{17}} \\ $$$$\frac{{r}}{{r}+{R}}=\frac{\mathrm{10}}{\mathrm{17}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{1}}{\frac{\mathrm{17}}{\mathrm{10}}−\mathrm{1}}=\frac{\mathrm{10}}{\mathrm{7}}\:\checkmark \\ $$
Commented by mr W last updated on 18/Nov/24
angle θ at which the ball is losing  the contact with the wedge is   independent from their radii!
$${angle}\:\theta\:{at}\:{which}\:{the}\:{ball}\:{is}\:{losing} \\ $$$${the}\:{contact}\:{with}\:{the}\:{wedge}\:{is}\: \\ $$$${independent}\:{from}\:{their}\:{radii}! \\ $$
Commented by ajfour last updated on 18/Nov/24
loss in G.P.E.=gain in total K.E.   mgR =(1/2)((7/5)mr^2 )ω^2   mgcos θ=mω^2 r^2 /(R+r)  now dividing  (R/(cos θ))=(7/(10))(R+r)  now  cos θ=(r/(R+r))  ⇒  (R/r)=(7/(10))  ★
$${loss}\:{in}\:{G}.{P}.{E}.={gain}\:{in}\:{total}\:{K}.{E}. \\ $$$$\:{mgR}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{5}}{mr}^{\mathrm{2}} \right)\omega^{\mathrm{2}} \\ $$$${mg}\mathrm{cos}\:\theta={m}\omega^{\mathrm{2}} {r}^{\mathrm{2}} /\left({R}+{r}\right) \\ $$$${now}\:{dividing} \\ $$$$\frac{{R}}{\mathrm{cos}\:\theta}=\frac{\mathrm{7}}{\mathrm{10}}\left({R}+{r}\right) \\ $$$${now}\:\:\mathrm{cos}\:\theta=\frac{{r}}{{R}+{r}} \\ $$$$\Rightarrow\:\:\frac{{R}}{{r}}=\frac{\mathrm{7}}{\mathrm{10}}\:\:\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *