Menu Close

Question-213956




Question Number 213956 by Ari last updated on 22/Nov/24
Answered by A5T last updated on 22/Nov/24
Let the numbers be: (x−2,x−1,x,x+1,x+2)  x=5a+2=7b+1=9c=11d−1=13e−2  7b+1≡2(mod 5)⇒b≡3(mod 5)⇒b=5f+3  ⇒7(5f+3)+1≡0(mod 9)⇒f≡4(mod 9)⇒f=9g+4  ⇒7g≡2(mod 11)⇒g≡5(mod 11)⇒g=11h+5  7(495h+248)+1≡11(mod 13)  h≡6(mod 13); h=13i+6  ⇒x=3465(13i+6)+1737=45045i+22527  There are infinitely many solutions   For example: (22525,22526,22527,22528,22529)
$${Let}\:{the}\:{numbers}\:{be}:\:\left({x}−\mathrm{2},{x}−\mathrm{1},{x},{x}+\mathrm{1},{x}+\mathrm{2}\right) \\ $$$${x}=\mathrm{5}{a}+\mathrm{2}=\mathrm{7}{b}+\mathrm{1}=\mathrm{9}{c}=\mathrm{11}{d}−\mathrm{1}=\mathrm{13}{e}−\mathrm{2} \\ $$$$\mathrm{7}{b}+\mathrm{1}\equiv\mathrm{2}\left({mod}\:\mathrm{5}\right)\Rightarrow{b}\equiv\mathrm{3}\left({mod}\:\mathrm{5}\right)\Rightarrow{b}=\mathrm{5}{f}+\mathrm{3} \\ $$$$\Rightarrow\mathrm{7}\left(\mathrm{5}{f}+\mathrm{3}\right)+\mathrm{1}\equiv\mathrm{0}\left({mod}\:\mathrm{9}\right)\Rightarrow{f}\equiv\mathrm{4}\left({mod}\:\mathrm{9}\right)\Rightarrow{f}=\mathrm{9}{g}+\mathrm{4} \\ $$$$\Rightarrow\mathrm{7}{g}\equiv\mathrm{2}\left({mod}\:\mathrm{11}\right)\Rightarrow{g}\equiv\mathrm{5}\left({mod}\:\mathrm{11}\right)\Rightarrow{g}=\mathrm{11}{h}+\mathrm{5} \\ $$$$\mathrm{7}\left(\mathrm{495}{h}+\mathrm{248}\right)+\mathrm{1}\equiv\mathrm{11}\left({mod}\:\mathrm{13}\right) \\ $$$${h}\equiv\mathrm{6}\left({mod}\:\mathrm{13}\right);\:{h}=\mathrm{13}{i}+\mathrm{6} \\ $$$$\Rightarrow{x}=\mathrm{3465}\left(\mathrm{13}{i}+\mathrm{6}\right)+\mathrm{1737}=\mathrm{45045}{i}+\mathrm{22527} \\ $$$${There}\:{are}\:{infinitely}\:{many}\:{solutions}\: \\ $$$${For}\:{example}:\:\left(\mathrm{22525},\mathrm{22526},\mathrm{22527},\mathrm{22528},\mathrm{22529}\right) \\ $$
Commented by A5T last updated on 23/Nov/24
Yea, for five-digit numbers.
$${Yea},\:{for}\:{five}-{digit}\:{numbers}. \\ $$
Commented by nikif99 last updated on 23/Nov/24
if i=0⇒x=22527 ✓  if i=1⇒x=67572 ✓  if i=2⇒x>99999
$${if}\:{i}=\mathrm{0}\Rightarrow{x}=\mathrm{22527}\:\checkmark \\ $$$${if}\:{i}=\mathrm{1}\Rightarrow{x}=\mathrm{67572}\:\checkmark \\ $$$${if}\:{i}=\mathrm{2}\Rightarrow{x}>\mathrm{99999} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *