Menu Close

Question-213960




Question Number 213960 by Tawa11 last updated on 22/Nov/24
Commented by Tawa11 last updated on 22/Nov/24
Prove by Mathematical Induction
$$\mathrm{Prove}\:\mathrm{by}\:\mathrm{Mathematical}\:\mathrm{Induction} \\ $$
Answered by A5T last updated on 24/Nov/24
S_n =Σ_(k=1) ^n k(n−k)=(((n−1)n(n+1))/6)  Assertion true for n=1,2  RTP: S_n ⇒S_(n+1)   S_n =Σ_(k=1) ^n k(n−k)=Σ_(k=1) ^n nk−Σ_(k=1) ^n k^2 =(((n−1)n(n+1))/6)  ⇒S_(n+1) =Σ_(k=1) ^(n+1) k(n+1−k)=(Σ_(k=1) ^(n+1) nk)+Σ_(k=1) ^(n+1) k−(Σ_(k=1) ^(n+1) k^2 )  =Σ_(k=1) ^n nk+n(n+1)+(((n+1)(n+2))/2)−Σ_(k=1) ^n k^2 −(n+1)^2   =Σ_(k=1) ^n nk−Σ_(k=1) ^n k^2 +(((n+1)(n))/2)  =(((n−1)n(n+1))/6)+((3n(n+1))/6)=(((n+1)[3n+n^2 −n])/6)  ⇒S_(n+1) =((n(n+1)(n+2))/6)
$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({n}−{k}\right)=\frac{\left({n}−\mathrm{1}\right){n}\left({n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$${Assertion}\:{true}\:{for}\:{n}=\mathrm{1},\mathrm{2} \\ $$$${RTP}:\:{S}_{{n}} \Rightarrow{S}_{{n}+\mathrm{1}} \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({n}−{k}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{nk}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} =\frac{\left({n}−\mathrm{1}\right){n}\left({n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\Rightarrow{S}_{{n}+\mathrm{1}} =\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{k}\left({n}+\mathrm{1}−{k}\right)=\left(\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{nk}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{k}−\left(\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{k}^{\mathrm{2}} \right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{nk}+{n}\left({n}+\mathrm{1}\right)+\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{2}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{nk}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} +\frac{\left({n}+\mathrm{1}\right)\left({n}\right)}{\mathrm{2}} \\ $$$$=\frac{\left({n}−\mathrm{1}\right){n}\left({n}+\mathrm{1}\right)}{\mathrm{6}}+\frac{\mathrm{3}{n}\left({n}+\mathrm{1}\right)}{\mathrm{6}}=\frac{\left({n}+\mathrm{1}\right)\left[\mathrm{3}{n}+{n}^{\mathrm{2}} −{n}\right]}{\mathrm{6}} \\ $$$$\Rightarrow{S}_{{n}+\mathrm{1}} =\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}} \\ $$
Commented by Tawa11 last updated on 12/Dec/24
Thanks sir. God bless you.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *