Menu Close

x-4-1-x-x-4-5-x-5-5x-1-dx-




Question Number 213962 by depressiveshrek last updated on 22/Nov/24
∫((x^4 −1)/(x(x^4 −5)(x^5 −5x+1)))dx
$$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\right)}{dx} \\ $$
Answered by Frix last updated on 23/Nov/24
∫((x^4 −1)/(x(x^4 −5)(x^5 −5x+1)))dx=  =(1/5)∫((1/x)+(1/(x−5^(1/4) ))+(1/(x+5^(1/4) ))+(2/(x^2 +5^(1/2) ))−((5x^4 −5)/(x^5 −5x+1)))dx=  =(1/5)(ln ∣x∣ +ln ∣x−5^(1/4) ∣ +ln ∣x+5^(1/4) ∣ +ln (x^2 +5^(1/2) ) −ln ∣x^5 −5x+1∣)=  =(1/5)ln ∣((x(x^4 −5))/(x^5 −5x+1))∣ +C
$$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\right)}{dx}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\int\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}−\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} }+\frac{\mathrm{1}}{{x}+\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} }+\frac{\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} }−\frac{\mathrm{5}{x}^{\mathrm{4}} −\mathrm{5}}{{x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}}\right){dx}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\left(\mathrm{ln}\:\mid{x}\mid\:+\mathrm{ln}\:\mid{x}−\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} \mid\:+\mathrm{ln}\:\mid{x}+\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} \mid\:+\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\:−\mathrm{ln}\:\mid{x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\mid\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln}\:\mid\frac{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)}{{x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}}\mid\:+{C} \\ $$
Commented by Frix last updated on 23/Nov/24
It′s not very hard.  x^4 −5=(x^2 −5^(1/2) )(x^2 +5^(1/2) )=  =(x−5^(1/4) )(x+5^(1/4) )(x^2 +5^(1/2) )  x^5 −5x+1 has no useable factorsp  ⇒  ((x^4 −1)/(x(x^4 −5)(x^5 −5x+1)))=  =(A/x)+(B/(x−5^(1/4) ))+(C/(x+5^(1/4) ))+((Dx+E)/(x^2 +5^(1/2) ))+((Fx^4 +Gx^3 +Hx^2 +Ix+J)/(x^5 −5x+1))  ⇒  A=B=C=(1/5)  D=(2/5)  E=G=H=I=0  F=−1  J=1
$$\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{very}\:\mathrm{hard}. \\ $$$${x}^{\mathrm{4}} −\mathrm{5}=\left({x}^{\mathrm{2}} −\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\left({x}^{\mathrm{2}} +\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)= \\ $$$$=\left({x}−\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)\left({x}+\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)\left({x}^{\mathrm{2}} +\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} \right) \\ $$$${x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\:\mathrm{has}\:\mathrm{no}\:\mathrm{useable}\:\mathrm{factors}{p} \\ $$$$\Rightarrow \\ $$$$\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\right)}= \\ $$$$=\frac{{A}}{{x}}+\frac{{B}}{{x}−\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} }+\frac{{C}}{{x}+\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} }+\frac{{Dx}+{E}}{{x}^{\mathrm{2}} +\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} }+\frac{{Fx}^{\mathrm{4}} +{Gx}^{\mathrm{3}} +{Hx}^{\mathrm{2}} +{Ix}+{J}}{{x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}} \\ $$$$\Rightarrow \\ $$$${A}={B}={C}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${D}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$${E}={G}={H}={I}=\mathrm{0} \\ $$$${F}=−\mathrm{1} \\ $$$${J}=\mathrm{1} \\ $$
Commented by depressiveshrek last updated on 23/Nov/24
Yes I can see that, but the decomposition  is not trivial. Please show full work.
$$\mathrm{Yes}\:\mathrm{I}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that},\:\mathrm{but}\:\mathrm{the}\:\mathrm{decomposition} \\ $$$$\mathrm{is}\:\mathrm{not}\:\mathrm{trivial}.\:\mathrm{Please}\:\mathrm{show}\:\mathrm{full}\:\mathrm{work}. \\ $$
Commented by depressiveshrek last updated on 23/Nov/24
How did you come to row 2?
$$\mathrm{How}\:\mathrm{did}\:\mathrm{you}\:\mathrm{come}\:\mathrm{to}\:\mathrm{row}\:\mathrm{2}? \\ $$
Commented by Frix last updated on 23/Nov/24
By decomposing
$$\mathrm{By}\:\mathrm{decomposing} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *