Menu Close

evaluate-0-pi-e-sin-2-u-du-i-use-Feynman-s-trick-to-solve-integral-0-pi-e-sin-2-u-du-I-I-t-0-pi-e-tsin-2-u-du-I-1-t-0-pi-sin-2-u-e-tsin-2-u-du-0-




Question Number 214051 by issac last updated on 25/Nov/24
evaluate ∫_0 ^( π)  e^(sin^2 (u)) du...   i use Feynman′s trick to solve integral  ∫_0 ^( π)  e^(sin^2 (u)) du=I  I(t)=∫_0 ^( π)  e^(tsin^2 (u)) du  I^((1)) (t)=∫_0 ^( π)  sin^2 (u)e^(tsin^2 (u)) du  ∫_0 ^( π) (1−cos^2 (u))e^(t∙sin^2 (u)) du  ∫_0 ^( π)  e^(t∙sin^2 (u)) du−∫_0 ^( π)  cos^2 (u)e^(t∙sin^2 (u)) du  ∫_0 ^( π)  e^(t∙sin^2 (u)) du−∫_0 ^( π)  sin^2 (u+(π/2))e^(t∙sin^2 (u)) du  u+(π/2) =w  →  du=dw  ∫_(π/2) ^((3π)/2)  sin^2 (w)e^(t∙cos^2 (w))  dw=  ∫_(π/2) ^( ((3π)/2))  sin^2 (w)e^(t(1−sin^2 (w))) dw  ∫_(π/2) ^((3π)/2)   sin^2 (w)e^t e^(−tsin^2 (w)) dw=e^t ∫_(π/2) ^((3π)/2)  sin^2 (w)e^(−tsin^2 (w)) dw  I^((1)) (t)=∫_0 ^( π)  e^(t∙sin^2 (u)) du−e^t ∫_0 ^( π)  sin^2 (u)e^(−t∙sin^2 (u)) du  I can′t ...anymore...help
$$\mathrm{evaluate}\:\int_{\mathrm{0}} ^{\:\pi} \:{e}^{\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}…\: \\ $$$$\mathrm{i}\:\mathrm{use}\:\mathrm{Feynman}'\mathrm{s}\:\mathrm{trick}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}={I} \\ $$$${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$${I}^{\left(\mathrm{1}\right)} \left({t}\right)=\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{sin}^{\mathrm{2}} \left({u}\right){e}^{{t}\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left({u}\right)\right){e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}−\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{cos}^{\mathrm{2}} \left({u}\right){e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}−\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{sin}^{\mathrm{2}} \left({u}+\frac{\pi}{\mathrm{2}}\right){e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$${u}+\frac{\pi}{\mathrm{2}}\:={w}\:\:\rightarrow\:\:\mathrm{d}{u}=\mathrm{d}{w} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{{t}\centerdot\mathrm{cos}^{\mathrm{2}} \left({w}\right)} \:\mathrm{d}{w}= \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\:\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{{t}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \left({w}\right)\right)} \mathrm{d}{w} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{{t}} {e}^{−{t}\mathrm{sin}^{\mathrm{2}} \left({w}\right)} \mathrm{d}{w}={e}^{{t}} \int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{−{t}\mathrm{sin}^{\mathrm{2}} \left({w}\right)} \mathrm{d}{w} \\ $$$${I}^{\left(\mathrm{1}\right)} \left({t}\right)=\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}−{e}^{{t}} \int_{\mathrm{0}} ^{\:\pi} \:\mathrm{sin}^{\mathrm{2}} \left({u}\right){e}^{−{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\mathrm{I}\:\mathrm{can}'\mathrm{t}\:…\mathrm{anymore}…\mathrm{help} \\ $$
Commented by Ghisom last updated on 26/Nov/24
Feynman can′t help here
$$\mathrm{Feynman}\:\mathrm{can}'\mathrm{t}\:\mathrm{help}\:\mathrm{here} \\ $$
Answered by Ghisom last updated on 26/Nov/24
∫_0 ^π e^(sin^2  x) dx=2∫_0 ^(π/2) e^(sin^2  x) dx=       [t=2x+π]  =(√e)∫_π ^(2π) e^((1/2)cos t) dt=(√e)∫_0 ^π e^((1/2)cos t) dt  Modified Bessel Function of the 1^(st)  Kind  I_n (z)=(1/π)∫_0 ^π e^(zcos θ) cos (nθ) dθ  in our case n=0∧z=(1/2) ⇒  (√e)∫_0 ^π e^((1/2)cos t) dt=(√e)πI_0  ((1/2))
$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{e}^{\mathrm{sin}^{\mathrm{2}} \:{x}} {dx}=\mathrm{2}\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{e}^{\mathrm{sin}^{\mathrm{2}} \:{x}} {dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}{x}+\pi\right] \\ $$$$=\sqrt{\mathrm{e}}\underset{\pi} {\overset{\mathrm{2}\pi} {\int}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{t}} {dt}=\sqrt{\mathrm{e}}\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{t}} {dt} \\ $$$$\mathrm{Modified}\:\mathrm{Bessel}\:\mathrm{Function}\:\mathrm{of}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{Kind} \\ $$$${I}_{{n}} \left({z}\right)=\frac{\mathrm{1}}{\pi}\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{e}^{{z}\mathrm{cos}\:\theta} \mathrm{cos}\:\left({n}\theta\right)\:{d}\theta \\ $$$$\mathrm{in}\:\mathrm{our}\:\mathrm{case}\:{n}=\mathrm{0}\wedge{z}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\sqrt{\mathrm{e}}\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{t}} {dt}=\sqrt{\mathrm{e}}\pi{I}_{\mathrm{0}} \:\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Commented by issac last updated on 27/Nov/24
wow thx
$${wow}\:{thx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *