Menu Close

Question-214040




Question Number 214040 by ajfour last updated on 25/Nov/24
Commented by ajfour last updated on 25/Nov/24
The △ is equilateral. Find its side s.
$${The}\:\bigtriangleup\:{is}\:{equilateral}.\:{Find}\:{its}\:{side}\:\boldsymbol{{s}}. \\ $$
Answered by mr W last updated on 25/Nov/24
y=x^2   (dy/dx)=2x=tan 30°=(1/( (√3)))  ⇒x=(1/(2(√3)))=p  r=p^2 −r cos 30°=p^2 −(((√3)r)/2)  ⇒r=(p^2 /(1+((√3)/( 2))))  x_C =p+r sin 30°=p+(r/2)=p+(p^2 /(2+(√3)))  s=2x_C =2p+((2p^2 )/(2+(√3)))=2×(1/(2(√3)))+(2/(2+(√3)))×(1/((2(√3))^2 ))  ⇒s=((2+(√3))/( 6)) ✓
$${y}={x}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2}{x}=\mathrm{tan}\:\mathrm{30}°=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}={p} \\ $$$${r}={p}^{\mathrm{2}} −{r}\:\mathrm{cos}\:\mathrm{30}°={p}^{\mathrm{2}} −\frac{\sqrt{\mathrm{3}}{r}}{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{{p}^{\mathrm{2}} }{\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\:\mathrm{2}}} \\ $$$${x}_{{C}} ={p}+{r}\:\mathrm{sin}\:\mathrm{30}°={p}+\frac{{r}}{\mathrm{2}}={p}+\frac{{p}^{\mathrm{2}} }{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$${s}=\mathrm{2}{x}_{{C}} =\mathrm{2}{p}+\frac{\mathrm{2}{p}^{\mathrm{2}} }{\mathrm{2}+\sqrt{\mathrm{3}}}=\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}+\frac{\mathrm{2}}{\mathrm{2}+\sqrt{\mathrm{3}}}×\frac{\mathrm{1}}{\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{s}=\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\:\mathrm{6}}\:\checkmark \\ $$
Commented by mr W last updated on 25/Nov/24
Commented by ajfour last updated on 25/Nov/24
Thank you Sir.
$${Thank}\:{you}\:{Sir}. \\ $$
Commented by nikif99 last updated on 25/Nov/24
Is there a unique solution, even in  relation to r?
$${Is}\:{there}\:{a}\:{unique}\:{solution},\:{even}\:{in} \\ $$$${relation}\:{to}\:{r}? \\ $$
Commented by nikif99 last updated on 25/Nov/24
Commented by mr W last updated on 25/Nov/24
two sides of the equilateral should  be the normals of the parabola,  therefore there is an unique   solution.
$${two}\:{sides}\:{of}\:{the}\:{equilateral}\:{should} \\ $$$${be}\:{the}\:{normals}\:{of}\:{the}\:{parabola}, \\ $$$${therefore}\:{there}\:{is}\:{an}\:{unique}\: \\ $$$${solution}. \\ $$
Commented by nikif99 last updated on 25/Nov/24
Thank you, Sir.
$${Thank}\:{you},\:{Sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *