Menu Close

Let-F-be-Field-of-characteristic-0-L-i-i-1-2-be-two-algebraic-extension-of-F-and-L-1-L-2-be-a-field-in-F-where-F-is-the-algebraic-closure-of-F-defined-by-l-1-l-2-l-i-L-i-i-1-2-




Question Number 214098 by issac last updated on 28/Nov/24
Let F be  Field of characteristic 0  L_i  (i=1,2) be two algebraic extension  of F , and L_1 L_2  be a field in F^�    (where F^�   is the algebraic closure  of F)  defined by {l_1 l_2 ∣l_i ∈L_i  (i=1,2)}  1. show that if L_1  and L_2  are galois over F  then L_1 L_2  is also Galois over F  2. show that if G(L_1 /F^  ) and G(L_2 /F^  )  are Solvable , then Gal(L_1 L_2 /F^  ) is also  Solvable
LetFbeFieldofcharacteristic0Li(i=1,2)betwoalgebraicextensionofF,andL1L2beafieldinF¯(whereF¯isthealgebraicclosureofF)definedby{l1l2liLi(i=1,2)}1.showthatifL1andL2aregaloisoverFthenL1L2isalsoGaloisoverF2.showthatifG(L1/F)andG(L2/F)areSolvable,thenGal(L1L2/F)isalsoSolvable
Answered by MrGaster last updated on 24/Dec/24
∀σ ∈ Gal(F^_ /F)  σ(L_1 )=L_1 and σ(L_2 )=L_2 _(Since L_1 ,L_2  are Galois over F)   ⇒σ(L_1 L_2 )=σ(L_1 )σ(L_2 ).>=L_1 L_2   ∴L_1 L_2  is Galois over F  Let G_i =Gal(L_i /F),(i=1,2)  Consider ϕ:Gal(L_1 L_2 /F)→G_1 ×G_2   σ (σ∣L_1 ,σ∣L_2 )  ker(ϕ)={σ ∈ Gal(L_1 L_2 /F):σ∣L_1 =id_L_1  and σ∣_L_2  =id_L_2  }  ⇒ker(ϕ)={id_(L_1 L_2 ) }⇒ϕ is injective  ∀(τ_1 ,τ_2 )∈ G_1 ×G_2 ∃!σ ∈ Gal(L_1 L_2 /F)  such that σ∣_L_1  =τ_1 and σ∣_L_2  =τ_2 _(By the universal property of compositum)   ⇒ϕ is surjectice  ∴ϕ is an isomorphism  G_1 ×G_2 is solvable if G_1 and G_2 are solvable  ⇒Gal(L_1 L_2 /F)≅G_1 ×G_2 is solvable
σGal(F_/F)σ(L1)=L1andσ(L2)=L2SinceL1,L2areGaloisoverFσ(L1L2)=σ(L1)σ(L2).>=L1L2L1L2isGaloisoverFLetGi=Gal(Li/F),(i=1,2)Considerφ:Gal(L1L2/F)G1×G2σ(σL1,σL2)ker(φ)={σGal(L1L2/F):σL1=idL1andσL2=idL2}ker(φ)={idL1L2}φisinjective(τ1,τ2)G1×G2!σGal(L1L2/F)suchthatσL1=τ1andσL2=τ2BytheuniversalpropertyofcompositumφissurjecticeφisanisomorphismG1×G2issolvableifG1andG2aresolvableGal(L1L2/F)G1×G2issolvable

Leave a Reply

Your email address will not be published. Required fields are marked *