Menu Close

Let-F-R-n-R-n-be-continuously-differentiable-a-assume-that-the-Jacoboian-matrix-f-i-x-j-has-rank-n-everywhere-prove-that-f-R-n-is-open-b-suppose-that-f-1-K-is-compact-whenever-K-R-




Question Number 214140 by issac last updated on 29/Nov/24
Let F ; R^n →R^n  be continuously  differentiable   a) assume that the Jacoboian matrix   (∂f_i /∂x_j ) has rank n everywhere  prove that f(R^n )is open  b) suppose that f^(−1) (K) is compact  whenever K⊂R^n  is compact.  prove that f(R^n ) is closed
$$\mathrm{Let}\:{F}\:;\:\mathbb{R}^{{n}} \rightarrow\mathbb{R}^{{n}} \:\mathrm{be}\:\mathrm{continuously} \\ $$$$\mathrm{differentiable}\: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\mathrm{assume}\:\mathrm{that}\:\mathrm{the}\:\mathrm{Jacoboian}\:\mathrm{matrix}\: \\ $$$$\frac{\partial{f}_{{i}} }{\partial{x}_{{j}} }\:\mathrm{has}\:\mathrm{rank}\:{n}\:\mathrm{everywhere} \\ $$$$\mathrm{prove}\:\mathrm{that}\:{f}\left(\mathbb{R}^{{n}} \right)\mathrm{is}\:\mathrm{open} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\mathrm{suppose}\:\mathrm{that}\:{f}^{−\mathrm{1}} \left({K}\right)\:\mathrm{is}\:\mathrm{compact} \\ $$$$\mathrm{whenever}\:{K}\subset\mathbb{R}^{{n}} \:\mathrm{is}\:\mathrm{compact}. \\ $$$$\mathrm{prove}\:\mathrm{that}\:{f}\left(\mathbb{R}^{{n}} \right)\:\mathrm{is}\:\mathrm{closed} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *