Menu Close

If-x-1-x-1-find-x-61-1-x-61-4-




Question Number 214186 by hardmath last updated on 30/Nov/24
If   x + (1/x) = 1   find   x^(61)  + (1/x^(61) )+ 4  = ?
$$\mathrm{If}\:\:\:\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\:=\:\mathrm{1}\:\:\:\mathrm{find}\:\:\:\mathrm{x}^{\mathrm{61}} \:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{61}} }+\:\mathrm{4}\:\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 30/Nov/24
x+(1/x)=1; x^(61) +(1/x^(61) )+4=?  x+(1/x)=1⇒x^2 =x−1  x^3 =x^2 −x=(x−1)−x=−1  (x^3 )^(20) =(−1)^(20) =1⇒x^(60) =1     x^(61) +(1/x^(61) )+4=x^(60) .x+(1/(x^(60) .x))+4                   =x+(1/x)+4=1+4=5
$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{1};\:{x}^{\mathrm{61}} +\frac{\mathrm{1}}{{x}^{\mathrm{61}} }+\mathrm{4}=? \\ $$$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{1}\Rightarrow{x}^{\mathrm{2}} ={x}−\mathrm{1} \\ $$$${x}^{\mathrm{3}} ={x}^{\mathrm{2}} −{x}=\left({x}−\mathrm{1}\right)−{x}=−\mathrm{1} \\ $$$$\left({x}^{\mathrm{3}} \right)^{\mathrm{20}} =\left(−\mathrm{1}\right)^{\mathrm{20}} =\mathrm{1}\Rightarrow{x}^{\mathrm{60}} =\mathrm{1} \\ $$$$\: \\ $$$${x}^{\mathrm{61}} +\frac{\mathrm{1}}{{x}^{\mathrm{61}} }+\mathrm{4}={x}^{\mathrm{60}} .{x}+\frac{\mathrm{1}}{{x}^{\mathrm{60}} .{x}}+\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}+\frac{\mathrm{1}}{{x}}+\mathrm{4}=\mathrm{1}+\mathrm{4}=\mathrm{5} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *