Menu Close

y-3-x-x-y-y-x-y-x-6-y-3-




Question Number 214191 by golsendro last updated on 01/Dec/24
       { ((y^3 = x^(x+y) )),((y^(x+y)  = x^6 y^3 )) :}
$$\:\:\:\:\:\:\begin{cases}{\mathrm{y}^{\mathrm{3}} =\:\mathrm{x}^{\mathrm{x}+\mathrm{y}} }\\{\mathrm{y}^{\mathrm{x}+\mathrm{y}} \:=\:\mathrm{x}^{\mathrm{6}} \mathrm{y}^{\mathrm{3}} }\end{cases} \\ $$$$\:\:\:\:\cancel{\underline{ }} \\ $$
Answered by TonyCWX08 last updated on 01/Dec/24
I can see that (x,y)=(1,1)  2(1)−1=1
$${I}\:{can}\:{see}\:{that}\:\left({x},{y}\right)=\left(\mathrm{1},\mathrm{1}\right) \\ $$$$\mathrm{2}\left(\mathrm{1}\right)−\mathrm{1}=\mathrm{1} \\ $$
Commented by efronzo1 last updated on 01/Dec/24
how about (x,y)= (2,4),(−3,9)
$$\mathrm{how}\:\mathrm{about}\:\left(\mathrm{x},\mathrm{y}\right)=\:\left(\mathrm{2},\mathrm{4}\right),\left(−\mathrm{3},\mathrm{9}\right) \\ $$
Commented by TonyCWX08 last updated on 01/Dec/24
Sorry  Im an amateur compared to you guys here.
$${Sorry} \\ $$$${Im}\:{an}\:{amateur}\:{compared}\:{to}\:{you}\:{guys}\:{here}. \\ $$
Answered by Rasheed.Sindhi last updated on 01/Dec/24
       { ((x^(x+y) = y^3 )),((y^(x+y)  = x^6 y^3 )) :} ; 2x−y=?  Multiplying :  (xy)^(x+y) =x^6 y^6 =(xy)^6   ⇒x+y=6 ⇒y=6−x  2x−y is not unique:  2x−y=2x−6+x=3x−6 for any x
$$\:\:\:\:\:\:\begin{cases}{\mathrm{x}^{\mathrm{x}+\mathrm{y}} =\:\mathrm{y}^{\mathrm{3}} }\\{\mathrm{y}^{\mathrm{x}+\mathrm{y}} \:=\:\mathrm{x}^{\mathrm{6}} \mathrm{y}^{\mathrm{3}} }\end{cases}\:;\:\mathrm{2}{x}−{y}=? \\ $$$${Multiplying}\:: \\ $$$$\left({xy}\right)^{{x}+{y}} ={x}^{\mathrm{6}} {y}^{\mathrm{6}} =\left({xy}\right)^{\mathrm{6}} \\ $$$$\Rightarrow{x}+{y}=\mathrm{6}\:\Rightarrow{y}=\mathrm{6}−{x} \\ $$$$\mathrm{2}{x}−{y}\:{is}\:{not}\:{unique}: \\ $$$$\mathrm{2}{x}−{y}=\mathrm{2}{x}−\mathrm{6}+{x}=\mathrm{3}{x}−\mathrm{6}\:{for}\:{any}\:{x} \\ $$
Answered by efronzo1 last updated on 01/Dec/24
  y=x^((x+y)/3)  ,  ⊀
$$\:\:\mathrm{y}=\mathrm{x}^{\frac{\mathrm{x}+\mathrm{y}}{\mathrm{3}}} \:,\:\:\cancel{\nprec} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *