Question Number 214455 by hardmath last updated on 09/Dec/24
$$\mathrm{If}\:\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{z}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{2xyz}} \\ $$
Commented by Ghisom last updated on 09/Dec/24
$$\mathrm{2} \\ $$
Commented by hardmath last updated on 09/Dec/24
$$\mathrm{Solution}\:\mathrm{please}… \\ $$
Commented by Ghisom last updated on 09/Dec/24
$$\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{expand}\:\mathrm{and}\:\mathrm{simply}\:\mathrm{use} \\ $$$${xyz}={x}+{y}+{z} \\ $$$$\mathrm{just}\:\mathrm{a}\:\mathrm{writing}\:\mathrm{exercise} \\ $$
Commented by hardmath last updated on 09/Dec/24
$$\mathrm{my}\:\mathrm{undertan}… \\ $$