Menu Close

If-x-y-z-xyz-Find-x-1-y-2-1-z-2-y-1-x-2-1-z-2-z-1-x-2-1-y-2-2xyz-




Question Number 214455 by hardmath last updated on 09/Dec/24
If   x+y+z=xyz  Find:  ((x(1−y^2 )(1−z^2 )+y(1−x^2 )(1−z^2 )+z(1−x^2 )(1−y^2 ))/(2xyz))
$$\mathrm{If}\:\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{z}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{2xyz}} \\ $$
Commented by Ghisom last updated on 09/Dec/24
2
$$\mathrm{2} \\ $$
Commented by hardmath last updated on 09/Dec/24
Solution please...
$$\mathrm{Solution}\:\mathrm{please}… \\ $$
Commented by Ghisom last updated on 09/Dec/24
you have to expand and simply use  xyz=x+y+z  just a writing exercise
$$\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{expand}\:\mathrm{and}\:\mathrm{simply}\:\mathrm{use} \\ $$$${xyz}={x}+{y}+{z} \\ $$$$\mathrm{just}\:\mathrm{a}\:\mathrm{writing}\:\mathrm{exercise} \\ $$
Commented by hardmath last updated on 09/Dec/24
my undertan...
$$\mathrm{my}\:\mathrm{undertan}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *