Menu Close

Let-s-R-z-define-as-R-z-pi-0-z-f-2-t-dt-2pi-0-z-f-t-1-f-1-t-2-dt-and-both-integral-0-f-2-t-dt-0-f-t-1-f-1-t-2-dt-lim-z-




Question Number 214511 by issac last updated on 11/Dec/24
Let′s R(z) define as   R(z)=((π ∫_0 ^( z)  f^2 (t)dt)/(2π ∫_0 ^( z)  f(t)(√(1+(f^((1)) (t))^2 ))dt))  and both integral  ∫_0 ^( ∞)  f^( 2) (t)dt , ∫_0 ^( ∞)  f(t)(√(1+(f^((1)) (t))^2 ))dt =∞  lim_(z→∞)  ((π ∫_0 ^( z) f^( 2) (t)dt)/(2π ∫_0 ^( z)  f(t)(√(1+(f^((1)) (t))^2 ))dt))  =lim_(z→∞)  ((π f(z))/(2π (√(1+(f^((1)) (z))^2 )))) ..??
LetsR(z)defineasR(z)=π0zf2(t)dt2π0zf(t)1+(f(1)(t))2dtandbothintegral0f2(t)dt,0f(t)1+(f(1)(t))2dt=limzπ0zf2(t)dt2π0zf(t)1+(f(1)(t))2dt=limzπf(z)2π1+(f(1)(z))2..??

Leave a Reply

Your email address will not be published. Required fields are marked *