Question Number 214629 by ajfour last updated on 14/Dec/24
Commented by ajfour last updated on 14/Dec/24
$${say}\:{for}\:{a}=\mathrm{3},\:{b}=\mathrm{2}. \\ $$
Answered by mr W last updated on 14/Dec/24
Commented by mr W last updated on 14/Dec/24
$${say}\:\frac{{b}}{{a}}=\mu,\:\frac{{r}}{{a}}=\lambda \\ $$$$\mathrm{tan}\:\mathrm{2}\alpha=\frac{{b}}{{a}}=\mu \\ $$$$\Rightarrow\mathrm{tan}\:\alpha=\frac{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }−\mathrm{1}}{\mu} \\ $$$$\mathrm{2}\gamma=\mathrm{2}\beta+\frac{\pi}{\mathrm{2}}−\mathrm{2}\alpha \\ $$$$\Rightarrow\gamma=\frac{\pi}{\mathrm{4}}+\beta−\alpha \\ $$$$\mathrm{2}\beta+\mathrm{2}\delta=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\delta=\frac{\pi}{\mathrm{4}}−\beta \\ $$$$\frac{{CD}}{\mathrm{sin}\:\mathrm{2}\alpha}=\frac{{a}}{\mathrm{sin}\:\mathrm{2}\gamma} \\ $$$$\Rightarrow{CD}=\frac{{a}\:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{sin}\:\mathrm{2}\gamma} \\ $$$$\:\:\:\:\:=\frac{{a}\:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{cos}\:\left(\mathrm{2}\beta−\mathrm{2}\alpha\right)} \\ $$$$\:\:\:\:\:=\frac{{a}}{\frac{\mathrm{cos}\:\mathrm{2}\beta}{\mathrm{tan}\:\mathrm{2}\alpha}+\mathrm{sin}\:\mathrm{2}\beta} \\ $$$$\:\:\:\:\:=\frac{{a}}{\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\beta}{\mu\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\beta\right)}+\frac{\mathrm{2}\:\mathrm{tan}\:\beta}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\beta}} \\ $$$$\:\:\:\:\:=\frac{{a}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\beta\right)}{\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\beta}{\mu}+\mathrm{2}\:\mathrm{tan}\:\beta} \\ $$$${CD}=\frac{{r}}{\mathrm{tan}\:\gamma}+\frac{{r}}{\mathrm{tan}\:\delta} \\ $$$$\Rightarrow\frac{{CD}}{{r}}=\frac{\mathrm{1}−\mathrm{tan}\:\left(\beta−\alpha\right)}{\mathrm{1}+\mathrm{tan}\:\left(\beta−\alpha\right)}+\frac{\mathrm{1}+\mathrm{tan}\:\beta}{\mathrm{1}−\mathrm{tan}\:\beta} \\ $$$${CD}=\frac{{r}}{\mathrm{tan}\:\beta}−\frac{{r}}{\mathrm{tan}\:\gamma} \\ $$$$\Rightarrow\frac{{CD}}{{r}}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}−\mathrm{tan}\:\left(\beta−\alpha\right)}{\mathrm{1}+\mathrm{tan}\:\left(\beta−\alpha\right)} \\ $$$$\frac{\mathrm{1}−\mathrm{tan}\:\left(\beta−\alpha\right)}{\mathrm{1}+\mathrm{tan}\:\left(\beta−\alpha\right)}+\frac{\mathrm{1}+\mathrm{tan}\:\beta}{\mathrm{1}−\mathrm{tan}\:\beta}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}−\mathrm{tan}\:\left(\beta−\alpha\right)}{\mathrm{1}+\mathrm{tan}\:\left(\beta−\alpha\right)} \\ $$$$\mathrm{2}×\frac{\mathrm{1}−\mathrm{tan}\:\left(\beta−\alpha\right)}{\mathrm{1}+\mathrm{tan}\:\left(\beta−\alpha\right)}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}+\mathrm{tan}\:\beta}{\mathrm{1}−\mathrm{tan}\:\beta} \\ $$$$\frac{\mathrm{4}}{\mathrm{1}+\mathrm{tan}\:\left(\beta−\alpha\right)}−\mathrm{2}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{2}}{\mathrm{1}−\mathrm{tan}\:\beta} \\ $$$$\frac{\mathrm{4}}{\mathrm{1}+\frac{\mathrm{tan}\:\beta−\mathrm{tan}\:\alpha}{\mathrm{1}+\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta}}−\mathrm{3}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{2}}{\mathrm{1}−\mathrm{tan}\:\beta} \\ $$$$\frac{\mathrm{4}\left(\mathrm{1}+\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta\right)}{\mathrm{1}−\mathrm{tan}\:\alpha+\left(\mathrm{1}+\mathrm{tan}\:\alpha\right)\mathrm{tan}\:\beta}−\frac{\mathrm{1}}{\mathrm{tan}\:\beta}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{tan}\:\beta}−\mathrm{3}=\mathrm{0} \\ $$$$\frac{{a}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\beta\right)}{\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\beta}{\mu}+\mathrm{2}\:\mathrm{tan}\:\beta}={r}\left[\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}−\mathrm{tan}\:\left(\beta−\alpha\right)}{\mathrm{1}+\mathrm{tan}\:\left(\beta−\alpha\right)}\right] \\ $$$$\frac{{a}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\beta\right)}{\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\beta}{\mu}+\mathrm{2}\:\mathrm{tan}\:\beta}={r}\left[\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta\right)}{\mathrm{1}−\mathrm{tan}\:\alpha+\left(\mathrm{1}+\mathrm{tan}\:\alpha\right)\mathrm{tan}\:\beta}\right] \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\beta}{\left(\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\beta}{\mu}+\mathrm{2}\:\mathrm{tan}\:\beta\right)\left[\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta\right)}{\mathrm{1}−\mathrm{tan}\:\alpha+\left(\mathrm{1}+\mathrm{tan}\:\alpha\right)\mathrm{tan}\:\beta}\right]} \\ $$$$ \\ $$$${example}:\: \\ $$$${a}=\mathrm{3},\:{b}=\mathrm{2}\:\Rightarrow\lambda=\mathrm{0}.\mathrm{2}\:\Rightarrow{r}=\mathrm{0}.\mathrm{6} \\ $$
Commented by mr W last updated on 14/Dec/24
Commented by mr W last updated on 14/Dec/24
Commented by mr W last updated on 14/Dec/24