Menu Close

1-The-function-H-is-defined-by-H-x-3cosh-x-3-sinh-x-3-Find-the-value-of-for-which-H-ln-3-4-2-Prove-that-2-4-6x-1-2x-3-3x-2-dx-ln-10-3-Show-that-sin-sin2-1-cos-cos2




Question Number 214658 by ChantalYah last updated on 15/Dec/24
1) The function H is defined by H(x) =3cosh(x/3)+sinh(x/3).  Find the value of λ for which H(lnλ^3 )=4  2) Prove that ∫_2 ^4  ((6x+1)/((2x−3)(3x−2)))dx= ln 10.  3)Show that ((sinθ + sin2θ)/(1+ cosθ+ cos2θ))≡ tanθ  4) If z=cosθ+ i sinθ, Show that z+(1/z)=2cosθ and that  z^n +(1/z^n )=2cos nθ hence or otherwise show that   32cos^6 θ= cos 6θ +6cos 4θ + 15cos 2θ+ 10.                           Mr Hans
$$\left.\mathrm{1}\right)\:\mathrm{The}\:\mathrm{function}\:\mathrm{H}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{H}\left(\mathrm{x}\right)\:=\mathrm{3cosh}\frac{\mathrm{x}}{\mathrm{3}}+\mathrm{sinh}\frac{\mathrm{x}}{\mathrm{3}}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\lambda\:\mathrm{for}\:\mathrm{which}\:\mathrm{H}\left(\mathrm{ln}\lambda^{\mathrm{3}} \right)=\mathrm{4} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{2}} ^{\mathrm{4}} \:\frac{\mathrm{6x}+\mathrm{1}}{\left(\mathrm{2x}−\mathrm{3}\right)\left(\mathrm{3x}−\mathrm{2}\right)}\mathrm{dx}=\:\mathrm{ln}\:\mathrm{10}. \\ $$$$\left.\mathrm{3}\right)\mathrm{Show}\:\mathrm{that}\:\frac{\mathrm{sin}\theta\:+\:\mathrm{sin2}\theta}{\mathrm{1}+\:\mathrm{cos}\theta+\:\mathrm{cos2}\theta}\equiv\:\mathrm{tan}\theta \\ $$$$\left.\mathrm{4}\right)\:\mathrm{If}\:\mathrm{z}=\mathrm{cos}\theta+\:\mathrm{i}\:\mathrm{sin}\theta,\:\mathrm{Show}\:\mathrm{that}\:\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}}=\mathrm{2cos}\theta\:\mathrm{and}\:\mathrm{that} \\ $$$$\mathrm{z}^{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{n}} }=\mathrm{2cos}\:\mathrm{n}\theta\:\mathrm{hence}\:\mathrm{or}\:\mathrm{otherwise}\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{32cos}^{\mathrm{6}} \theta=\:\mathrm{cos}\:\mathrm{6}\theta\:+\mathrm{6cos}\:\mathrm{4}\theta\:+\:\mathrm{15cos}\:\mathrm{2}\theta+\:\mathrm{10}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Mr}\:\mathrm{Hans} \\ $$
Answered by a.lgnaoui last updated on 15/Dec/24
2)∫_2 ^4  ((6x+1)/((2x−3)(3x−2)))dx=   ((6x+1)/((2x−3)(3x−2)))=(a/(2x−3))+(b/((3x−2)))  =(((3a+2b)x−(2a+3b))/((2x−3)(3x−2)))    { ((3a+2b=6    ×2)),((2a+3b=−1  ×−3)) :}    −5b=15    ⇒       a=4   b=−3       ∫_2 ^4  ((6x+1)/((2x−3)(3x+2)))=  ∫(4/(2x−3))dx−∫(3/(3x−2))dx    •2[ln(2x−3)]_2 ^4 −[ln(3x−2)    −(ln(3x−2)]_2 ^4 =  2[ln(5)−(ln10)+ln4=ln5+ln2=ln10    •3)((sin 𝛉+sin 2𝛉)/(1+cos 𝛉+cos 2𝛉))=((sin𝛉(1+2cos 𝛉) )/(cos 𝛉(1+2cos 𝛉)))     tan 𝛉      •4)if   z=cos 𝛉+isin 𝛉        z+(1/z)=cos 𝛉+isin 𝛉+((cos 𝛉−isin 𝛉)/1)     =2cos 𝛉     ⇒           z^n +(1/z^n )=2cos n𝛉   32cos 6𝛉=2^5 cos 6𝛉=2^4 ×(2cos 6𝛉)                    2^4 [(cos 6𝛉+isin 6𝛉)+(1/(cos 6𝛉+isin 6𝛉))     =2^5 (2cos^2 3𝛉−1)  cos 3𝛉=4cos^3 𝛉−3cos 𝛉   cos 6𝛉=2cos^2 3𝛉−1  =2cos^2 𝛉(4cos^2 𝛉−3)^2 −1    =2(16cos^6 𝛉−24cos^4 𝛉+9cos^2 𝛉)−1  soit     32cos^6 𝛉=cos 6𝛉+48cos^4 𝛉−18cos^2 𝛉+1    cos 4𝛉=2(2cos^2 𝛉−1)^2 −1  =2(4cos^4 𝛉+1−4cos^2 𝛉)−1  =8cos^4 𝛉−8cos^2 𝛉+1    ⇒  48cos^4 𝛉−18cos^2 𝛉  =6cos 4𝛉+30cos^2 𝛉  32cos^6 𝛉=cos 6𝛉+6cos 4𝛉+30cos^2 𝛉  =cos 6𝛉+6cos 4𝛉+15(cos 2𝛉)+15
$$\left.\mathrm{2}\right)\int_{\mathrm{2}} ^{\mathrm{4}} \:\frac{\mathrm{6x}+\mathrm{1}}{\left(\mathrm{2x}−\mathrm{3}\right)\left(\mathrm{3x}−\mathrm{2}\right)}\mathrm{dx}= \\ $$$$\:\frac{\mathrm{6x}+\mathrm{1}}{\left(\mathrm{2x}−\mathrm{3}\right)\left(\mathrm{3x}−\mathrm{2}\right)}=\frac{\mathrm{a}}{\mathrm{2x}−\mathrm{3}}+\frac{\mathrm{b}}{\left(\mathrm{3x}−\mathrm{2}\right)} \\ $$$$=\frac{\left(\mathrm{3a}+\mathrm{2b}\right)\mathrm{x}−\left(\mathrm{2a}+\mathrm{3b}\right)}{\left(\mathrm{2x}−\mathrm{3}\right)\left(\mathrm{3x}−\mathrm{2}\right)} \\ $$$$\:\begin{cases}{\mathrm{3a}+\mathrm{2b}=\mathrm{6}\:\:\:\:×\mathrm{2}}\\{\mathrm{2a}+\mathrm{3b}=−\mathrm{1}\:\:×−\mathrm{3}}\end{cases} \\ $$$$\:\:−\mathrm{5b}=\mathrm{15}\:\:\:\:\Rightarrow\:\:\:\:\:\:\:\mathrm{a}=\mathrm{4}\:\:\:\mathrm{b}=−\mathrm{3}\:\:\: \\ $$$$\:\:\int_{\mathrm{2}} ^{\mathrm{4}} \:\frac{\mathrm{6x}+\mathrm{1}}{\left(\mathrm{2x}−\mathrm{3}\right)\left(\mathrm{3x}+\mathrm{2}\right)}= \\ $$$$\int\frac{\mathrm{4}}{\mathrm{2x}−\mathrm{3}}\mathrm{dx}−\int\frac{\mathrm{3}}{\mathrm{3x}−\mathrm{2}}\mathrm{dx} \\ $$$$ \\ $$$$\bullet\mathrm{2}\left[\mathrm{ln}\left(\mathrm{2x}−\mathrm{3}\right)\right]_{\mathrm{2}} ^{\mathrm{4}} −\left[\mathrm{ln}\left(\mathrm{3x}−\mathrm{2}\right)\right. \\ $$$$\:\:−\left(\mathrm{ln}\left(\mathrm{3x}−\mathrm{2}\right)\right]_{\mathrm{2}} ^{\mathrm{4}} = \\ $$$$\mathrm{2}\left[\mathrm{ln}\left(\mathrm{5}\right)−\left(\mathrm{ln10}\right)+\mathrm{ln4}=\mathrm{ln5}+\mathrm{ln2}=\mathrm{ln10}\right. \\ $$$$ \\ $$$$\left.\bullet\mathrm{3}\right)\frac{\mathrm{sin}\:\boldsymbol{\theta}+\mathrm{sin}\:\mathrm{2}\boldsymbol{\theta}}{\mathrm{1}+\mathrm{cos}\:\boldsymbol{\theta}+\mathrm{cos}\:\mathrm{2}\boldsymbol{\theta}}=\frac{\mathrm{sin}\boldsymbol{\theta}\left(\mathrm{1}+\mathrm{2cos}\:\boldsymbol{\theta}\right)\:}{\mathrm{cos}\:\boldsymbol{\theta}\left(\mathrm{1}+\mathrm{2cos}\:\boldsymbol{\theta}\right)} \\ $$$$\:\:\:\mathrm{tan}\:\boldsymbol{\theta} \\ $$$$\:\: \\ $$$$\left.\bullet\mathrm{4}\right)\mathrm{if}\:\:\:\boldsymbol{\mathrm{z}}=\mathrm{cos}\:\boldsymbol{\theta}+\mathrm{isin}\:\boldsymbol{\theta} \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{z}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}}=\mathrm{cos}\:\boldsymbol{\theta}+\mathrm{isin}\:\boldsymbol{\theta}+\frac{\mathrm{cos}\:\boldsymbol{\theta}−\mathrm{isin}\:\boldsymbol{\theta}}{\mathrm{1}} \\ $$$$\:\:\:=\mathrm{2cos}\:\boldsymbol{\theta}\:\:\:\:\:\Rightarrow\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{z}}^{\mathrm{n}} +\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}^{\boldsymbol{\mathrm{n}}} }=\mathrm{2cos}\:\boldsymbol{\mathrm{n}\theta} \\ $$$$\:\mathrm{32cos}\:\mathrm{6}\boldsymbol{\theta}=\mathrm{2}^{\mathrm{5}} \mathrm{cos}\:\mathrm{6}\boldsymbol{\theta}=\mathrm{2}^{\mathrm{4}} ×\left(\mathrm{2cos}\:\mathrm{6}\boldsymbol{\theta}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{4}} \left[\left(\mathrm{cos}\:\mathrm{6}\boldsymbol{\theta}+\mathrm{isin}\:\mathrm{6}\boldsymbol{\theta}\right)+\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{6}\boldsymbol{\theta}+\mathrm{isin}\:\mathrm{6}\boldsymbol{\theta}}\right. \\ $$$$\:\:\:=\mathrm{2}^{\mathrm{5}} \left(\mathrm{2cos}\:^{\mathrm{2}} \mathrm{3}\boldsymbol{\theta}−\mathrm{1}\right) \\ $$$$\mathrm{cos}\:\mathrm{3}\boldsymbol{\theta}=\mathrm{4cos}\:^{\mathrm{3}} \boldsymbol{\theta}−\mathrm{3cos}\:\boldsymbol{\theta} \\ $$$$\:\mathrm{cos}\:\mathrm{6}\boldsymbol{\theta}=\mathrm{2cos}\:^{\mathrm{2}} \mathrm{3}\boldsymbol{\theta}−\mathrm{1} \\ $$$$=\mathrm{2cos}\:^{\mathrm{2}} \boldsymbol{\theta}\left(\mathrm{4cos}\:^{\mathrm{2}} \boldsymbol{\theta}−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:=\mathrm{2}\left(\mathrm{16cos}\:^{\mathrm{6}} \boldsymbol{\theta}−\mathrm{24cos}\:^{\mathrm{4}} \boldsymbol{\theta}+\mathrm{9cos}\:^{\mathrm{2}} \boldsymbol{\theta}\right)−\mathrm{1} \\ $$$$\mathrm{soit} \\ $$$$\:\:\:\mathrm{32cos}\:^{\mathrm{6}} \boldsymbol{\theta}=\mathrm{cos}\:\mathrm{6}\boldsymbol{\theta}+\mathrm{48cos}\:^{\mathrm{4}} \boldsymbol{\theta}−\mathrm{18cos}\:^{\mathrm{2}} \boldsymbol{\theta}+\mathrm{1} \\ $$$$ \\ $$$$\mathrm{cos}\:\mathrm{4}\boldsymbol{\theta}=\mathrm{2}\left(\mathrm{2cos}\:^{\mathrm{2}} \boldsymbol{\theta}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$=\mathrm{2}\left(\mathrm{4cos}\:^{\mathrm{4}} \boldsymbol{\theta}+\mathrm{1}−\mathrm{4cos}\:^{\mathrm{2}} \boldsymbol{\theta}\right)−\mathrm{1} \\ $$$$=\mathrm{8cos}\:^{\mathrm{4}} \boldsymbol{\theta}−\mathrm{8cos}\:^{\mathrm{2}} \boldsymbol{\theta}+\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow\:\:\mathrm{48cos}\:^{\mathrm{4}} \boldsymbol{\theta}−\mathrm{18cos}\:^{\mathrm{2}} \boldsymbol{\theta} \\ $$$$=\mathrm{6cos}\:\mathrm{4}\boldsymbol{\theta}+\mathrm{30cos}\:^{\mathrm{2}} \boldsymbol{\theta} \\ $$$$\mathrm{32cos}\:^{\mathrm{6}} \boldsymbol{\theta}=\mathrm{cos}\:\mathrm{6}\boldsymbol{\theta}+\mathrm{6cos}\:\mathrm{4}\boldsymbol{\theta}+\mathrm{30cos}\:^{\mathrm{2}} \boldsymbol{\theta} \\ $$$$=\mathrm{cos}\:\mathrm{6}\boldsymbol{\theta}+\mathrm{6cos}\:\mathrm{4}\boldsymbol{\theta}+\mathrm{15}\left(\mathrm{cos}\:\mathrm{2}\boldsymbol{\theta}\right)+\mathrm{15} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *