Menu Close

Question-214683




Question Number 214683 by MATHEMATICSAM last updated on 16/Dec/24
Commented by MATHEMATICSAM last updated on 16/Dec/24
Circles C1 and C2 have equal radii and  are tangent to the same line XY. Circle  C3 is tangent to C1 and C2. Find  distance h, from the centre of C3 to line  XY in terms of x and radii of the circles.  x is the distance between the centres of  C1 and C2.
$$\mathrm{Circles}\:\mathrm{C1}\:\mathrm{and}\:\mathrm{C2}\:\mathrm{have}\:\mathrm{equal}\:\mathrm{radii}\:\mathrm{and} \\ $$$$\mathrm{are}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{line}\:\mathrm{XY}.\:\mathrm{Circle} \\ $$$$\mathrm{C3}\:\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{C1}\:\mathrm{and}\:\mathrm{C2}.\:\mathrm{Find} \\ $$$$\mathrm{distance}\:{h},\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{C3}\:\mathrm{to}\:\mathrm{line} \\ $$$$\mathrm{XY}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{x}\:\mathrm{and}\:\mathrm{radii}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circles}. \\ $$$${x}\:\mathrm{is}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{centres}\:\mathrm{of} \\ $$$$\mathrm{C1}\:\mathrm{and}\:\mathrm{C2}. \\ $$
Answered by mr W last updated on 16/Dec/24
a=radius of C1 and C2  b=radius of C3  (h−a)^2 +((x/2))^2 =(a+b)^2   ⇒h=a+(√((a+b)^2 −(x^2 /4)))
$${a}={radius}\:{of}\:{C}\mathrm{1}\:{and}\:{C}\mathrm{2} \\ $$$${b}={radius}\:{of}\:{C}\mathrm{3} \\ $$$$\left({h}−{a}\right)^{\mathrm{2}} +\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} =\left({a}+{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{h}={a}+\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$
Commented by MATHEMATICSAM last updated on 16/Dec/24
Thanks sir :)
$$\left.\mathrm{Thanks}\:\mathrm{sir}\::\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *