Menu Close

x-




Question Number 214712 by efronzo1 last updated on 17/Dec/24
   x
$$\:\:\:\cancel{\underline{\underbrace{\boldsymbol{{x}}}}} \\ $$
Answered by mr W last updated on 17/Dec/24
r^2 −3r+2=0  (r−1)(r−2)=0  r=1, 2  ⇒a_n =A×1^n +B×2^n   a_0 =A+B=2  a_1 =A+2B=5  ⇒B=3, A=−1  ⇒a_n =3×2^n −1 ✓
$${r}^{\mathrm{2}} −\mathrm{3}{r}+\mathrm{2}=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)=\mathrm{0} \\ $$$${r}=\mathrm{1},\:\mathrm{2} \\ $$$$\Rightarrow{a}_{{n}} ={A}×\mathrm{1}^{{n}} +{B}×\mathrm{2}^{{n}} \\ $$$${a}_{\mathrm{0}} ={A}+{B}=\mathrm{2} \\ $$$${a}_{\mathrm{1}} ={A}+\mathrm{2}{B}=\mathrm{5} \\ $$$$\Rightarrow{B}=\mathrm{3},\:{A}=−\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} =\mathrm{3}×\mathrm{2}^{{n}} −\mathrm{1}\:\checkmark \\ $$
Answered by mr W last updated on 17/Dec/24
alternative approach  a_(n+2) −a_(n+1) =2(a_(n+1) −a_n )  say b_n =a_(n+1) −a_n   b_(n+1) =2b_n   ← G.P.  ⇒b_n =2^n ×b_0 =2^n (a_1 −a_0 )=3×2^n   a_(n+1) −a_n =3×2^n   a_n −a_(n−1) =3×2^(n−1)   ......  a_1 −a_0 =3×2^0   a_(n+1) −a_0 =3(1+2+...+2^n )=3×((2^(n+1) −1)/(2−1))  a_(n+1) =3×((2^(n+1) −1)/(2−1))+2=3×2^(n+1) −1  ⇒a_n =3×2^n −1 ✓
$${alternative}\:{approach} \\ $$$${a}_{{n}+\mathrm{2}} −{a}_{{n}+\mathrm{1}} =\mathrm{2}\left({a}_{{n}+\mathrm{1}} −{a}_{{n}} \right) \\ $$$${say}\:{b}_{{n}} ={a}_{{n}+\mathrm{1}} −{a}_{{n}} \\ $$$${b}_{{n}+\mathrm{1}} =\mathrm{2}{b}_{{n}} \:\:\leftarrow\:{G}.{P}. \\ $$$$\Rightarrow{b}_{{n}} =\mathrm{2}^{{n}} ×{b}_{\mathrm{0}} =\mathrm{2}^{{n}} \left({a}_{\mathrm{1}} −{a}_{\mathrm{0}} \right)=\mathrm{3}×\mathrm{2}^{{n}} \\ $$$${a}_{{n}+\mathrm{1}} −{a}_{{n}} =\mathrm{3}×\mathrm{2}^{{n}} \\ $$$${a}_{{n}} −{a}_{{n}−\mathrm{1}} =\mathrm{3}×\mathrm{2}^{{n}−\mathrm{1}} \\ $$$$…… \\ $$$${a}_{\mathrm{1}} −{a}_{\mathrm{0}} =\mathrm{3}×\mathrm{2}^{\mathrm{0}} \\ $$$${a}_{{n}+\mathrm{1}} −{a}_{\mathrm{0}} =\mathrm{3}\left(\mathrm{1}+\mathrm{2}+…+\mathrm{2}^{{n}} \right)=\mathrm{3}×\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{2}−\mathrm{1}} \\ $$$${a}_{{n}+\mathrm{1}} =\mathrm{3}×\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{2}−\mathrm{1}}+\mathrm{2}=\mathrm{3}×\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} =\mathrm{3}×\mathrm{2}^{{n}} −\mathrm{1}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *