Menu Close

Question-214719




Question Number 214719 by RoseAli last updated on 18/Dec/24
Answered by som(math1967) last updated on 18/Dec/24
 let x−1=a   x→1⇒(x−1)→0⇒a→0   lim_(a→0) ((sina)/a) =1
$$\:{let}\:{x}−\mathrm{1}={a} \\ $$$$\:{x}\rightarrow\mathrm{1}\Rightarrow\left({x}−\mathrm{1}\right)\rightarrow\mathrm{0}\Rightarrow{a}\rightarrow\mathrm{0} \\ $$$$\:\underset{{a}\rightarrow\mathrm{0}} {{lim}}\frac{{sina}}{{a}}\:=\mathrm{1} \\ $$
Answered by sayedahmad last updated on 18/Dec/24
1
$$\mathrm{1} \\ $$
Answered by MathematicalUser2357 last updated on 18/Dec/24
lim_(x→1)  ((sin(x−1))/(x−1))  We can simplify x→1 to x−1→0.  Let a=x−1, Use limit idenity  =lim_(a→0)  ((sin a)/a)=1
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{sin}\left({x}−\mathrm{1}\right)}{{x}−\mathrm{1}} \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{simplify}\:{x}\rightarrow\mathrm{1}\:\mathrm{to}\:{x}−\mathrm{1}\rightarrow\mathrm{0}. \\ $$$$\mathrm{Let}\:{a}={x}−\mathrm{1},\:\mathrm{Use}\:\mathrm{limit}\:\mathrm{idenity} \\ $$$$=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{a}}{{a}}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *