Menu Close

Question-214742




Question Number 214742 by mr W last updated on 18/Dec/24
Commented by mr W last updated on 18/Dec/24
find the volume of water in the  cylinderical cup.
$${find}\:{the}\:{volume}\:{of}\:{water}\:{in}\:{the} \\ $$$${cylinderical}\:{cup}. \\ $$
Commented by Hamada1969 last updated on 18/Dec/24
Commented by ajfour last updated on 18/Dec/24
https://youtu.be/pAkC2541W4Q?si=Pn7NfbYt0vSZwa-5 A video lecture of a projectile motion question by me.
Answered by ajfour last updated on 18/Dec/24
Commented by ajfour last updated on 18/Dec/24
(x/L)=(y/R)  y=((R/L))x      cos θ=((R−y)/R)=1−(x/L)  x=0  ⇔ θ=0   , x=L ⇔ θ=(π/2)  dx=Lsin θ  ∫dV=∫_0 ^( (π/2)) (R^2 θ−R^2 sin θcos θ)(Lsin θ)  ∫_0 ^( (π/2)) θsin θdθ=(−θcos θ+sin θ)∣_0 ^(π/2) =1                   (V/(R^2 L))=1−(1/3)=(2/3)  (V/(πR^2 L))=(2/(3π)) ≈ 0.2122
$$\frac{{x}}{{L}}=\frac{{y}}{{R}} \\ $$$${y}=\left(\frac{{R}}{{L}}\right){x}\:\:\:\: \\ $$$$\mathrm{cos}\:\theta=\frac{{R}−{y}}{{R}}=\mathrm{1}−\frac{{x}}{{L}} \\ $$$${x}=\mathrm{0}\:\:\Leftrightarrow\:\theta=\mathrm{0}\:\:\:,\:{x}={L}\:\Leftrightarrow\:\theta=\frac{\pi}{\mathrm{2}} \\ $$$${dx}={L}\mathrm{sin}\:\theta \\ $$$$\int{dV}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left({R}^{\mathrm{2}} \theta−{R}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta\right)\left({L}\mathrm{sin}\:\theta\right) \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \theta\mathrm{sin}\:\theta{d}\theta=\left(−\theta\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\frac{{V}}{{R}^{\mathrm{2}} {L}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\frac{{V}}{\pi{R}^{\mathrm{2}} {L}}=\frac{\mathrm{2}}{\mathrm{3}\pi}\:\approx\:\mathrm{0}.\mathrm{2122} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *