Menu Close

If-x-cy-bz-y-cx-az-and-z-bx-ay-then-prove-that-x-1-a-2-y-1-b-2-z-1-c-2-




Question Number 214759 by MATHEMATICSAM last updated on 19/Dec/24
If x = cy + bz, y = cx + az and  z = bx + ay then prove that  (x/( (√(1 − a^2 )))) = (y/( (√(1 − b^2 )))) = (z/( (√(1 − c^2 )))) .
Ifx=cy+bz,y=cx+azandz=bx+aythenprovethatx1a2=y1b2=z1c2.
Answered by MathematicalUser2357 last updated on 19/Dec/24
It gives us x=y=z=0,  and (0/( (√(1−a^2 ))))=(0/( (√(1−b^2 ))))=(0/( (√(1−c^2 )))) is true. Only for a,b,c∈(−1,1)  ■
Itgivesusx=y=z=0,and01a2=01b2=01c2istrue.Onlyfora,b,c(1,1)◼
Answered by som(math1967) last updated on 19/Dec/24
 x=cy+bz  ⇒x=cy+b(bx+ay)  ⇒x=cy+b^2 x+aby  ⇒x(1−b^2 )=y(c+ab)  ⇒(x/y)=(((c+ab))/((1−b^2 ))) .......(1)   y=cx+az  ⇒y=cx+a(bx+ay)  ⇒y(1−a^2 )=x(c+ab)  ⇒(x/y)=((1−a^2 )/(c+ab))   ........(2)   (1)×(2)   (x^2 /y^2 )=((c+ab)/(1−b^2 ))×((1−a^2 )/(c+ab))  ⇒(x/y)=((√(1−a^2 ))/( (√(1−b^2 ))))   ∴ (x/( (√(1−a^2 ))))=(y/( (√(1−b^2 ))))   same way we can show   (y/( (√(1−b^2 ))))=(z/( (√(1−c^2 ))))
x=cy+bzx=cy+b(bx+ay)x=cy+b2x+abyx(1b2)=y(c+ab)xy=(c+ab)(1b2).(1)y=cx+azy=cx+a(bx+ay)y(1a2)=x(c+ab)xy=1a2c+ab..(2)(1)×(2)x2y2=c+ab1b2×1a2c+abxy=1a21b2x1a2=y1b2samewaywecanshowy1b2=z1c2

Leave a Reply

Your email address will not be published. Required fields are marked *