Question Number 214785 by mathlove last updated on 19/Dec/24
$$\left({x}−\mathrm{3}\right)^{\mathrm{4}} =\mathrm{7}^{\mathrm{4}} \\ $$$${x}=? \\ $$
Answered by Ismoiljon_008 last updated on 19/Dec/24
$$\:\:\:\mid\:{x}\:−\:\mathrm{3}\:\mid\:=\:\mathrm{7} \\ $$$$\:\:\:{x}\:−\:\mathrm{3}\:=\:\mathrm{7} \\ $$$$\:\:\:{x}\:=\:\mathrm{10}\:\:\checkmark \\ $$$$\:\:\:{x}\:−\:\mathrm{3}\:=\:−\:\mathrm{7} \\ $$$$\:\:\:{x}\:=\:−\:\mathrm{4}\:\:\checkmark \\ $$$$\:\:\:\mathbb{A}{nswer}:\:\:{x}_{\mathrm{1}} \:=\:\mathrm{10}\:;\:\:{x}_{\mathrm{2}} \:=\:−\:\mathrm{4} \\ $$
Answered by ppch145 last updated on 19/Dec/24
$$\mathrm{To}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{x},\:\mathrm{we}\:\mathrm{can}\:\mathrm{start}\:\mathrm{by}\: \\ $$$$\mathrm{taking}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{root}\:\mathrm{of}\:\mathrm{both}\: \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$ \\ $$$$\left(\mathrm{x}\:−\:\mathrm{3}\right)^{\mathrm{4}\:×\frac{\mathrm{1}}{\mathrm{4}}\:} \:=\:\mathrm{7}^{\mathrm{4}\:×\frac{\mathrm{1}}{\mathrm{4}}} \: \\ $$$$ \\ $$$$\mathrm{The}\:\mathrm{powers}\:\mathrm{cancel}\:\mathrm{out},\:\mathrm{leaving}\: \\ $$$$\mathrm{us}\:\mathrm{with}\:\mathrm{x}\:−\:\mathrm{3}\:=\:\pm\mathrm{7} \\ $$$$ \\ $$$$\mathrm{Since}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{root}\:\mathrm{can}\:\mathrm{have}\: \\ $$$$\mathrm{both}\:\mathrm{positive}\:\mathrm{and}\:\mathrm{negative}\: \\ $$$$\mathrm{values},\:\mathrm{we}\:\mathrm{have}\:\mathrm{two}\:\mathrm{possible}\: \\ $$$$\mathrm{equations}: \\ $$$$ \\ $$$$\mathrm{x}\:−\:\mathrm{3}\:=\:\mathrm{7}\:\mathrm{or}\:\mathrm{x}\:−\:\mathrm{3}\:=\:−\mathrm{7} \\ $$$$ \\ $$$$\mathrm{Solving}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathrm{both}\:\mathrm{equations}: \\ $$$$ \\ $$$$\mathrm{x}\:=\:\mathrm{7}+\:\mathrm{3}\:\mathrm{or}\:\mathrm{x}\:=\:−\mathrm{7}\:+\:\mathrm{3} \\ $$$$ \\ $$$$\mathrm{x}\:=\:\mathrm{10}\:\mathrm{or}\:\mathrm{x}\:=\:−\mathrm{4} \\ $$$$ \\ $$$$\mathrm{So},\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{are}:\:\mathrm{10}\:\mathrm{and}\:−\mathrm{4}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 19/Dec/24
$$\left({x}−\mathrm{3}\right)^{\mathrm{4}} =\mathrm{7}^{\mathrm{4}} \:;\:\:{x}=? \\ $$$$\left({x}−\mathrm{3}\right)^{\mathrm{4}} −\mathrm{7}^{\mathrm{4}} =\mathrm{0} \\ $$$$\left\{\left({x}−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} \right\}\left\{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} \right\}=\mathrm{0} \\ $$$$\left\{\left({x}−\mathrm{3}\right)−\mathrm{7}\right\}\left\{\left({x}−\mathrm{3}\right)+\mathrm{7}\right\}\left\{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} \right\}=\mathrm{0} \\ $$$$\begin{cases}{{x}−\mathrm{10}=\mathrm{0}\Rightarrow{x}=\mathrm{10}}\\{{x}+\mathrm{4}=\mathrm{0}\Rightarrow{x}=−\mathrm{4}}\\{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} =\mathrm{0}\Rightarrow\left({x}−\mathrm{3}\right)^{\mathrm{2}} =−\mathrm{49}^{\bigstar} }\end{cases} \\ $$$$\:^{\bigstar} {x}−\mathrm{3}=\pm\mathrm{7}{i}\Rightarrow{x}=\mathrm{3}\pm\mathrm{7}{i} \\ $$
Answered by MrGaster last updated on 19/Dec/24
$$\left({x}−\mathrm{3}\right)^{\mathrm{4}} =\left(\mathrm{7}\right)^{\mathrm{4}} \\ $$$$\sqrt[{\mathrm{4}}]{\left({x}−\mathrm{3}\right)^{\mathrm{4}} }=\sqrt[{\mathrm{4}}]{\mathrm{7}^{\mathrm{4}} } \\ $$$${x}−\mathrm{3}=\pm\mathrm{7} \\ $$$${x}=\mathrm{3}\pm\mathrm{7} \\ $$$${x}−\mathrm{3}+\mathrm{7},{x}−\mathrm{3}−\mathrm{7} \\ $$$${x}=\mathrm{10}\:\mathrm{or}\:{x}=−\mathrm{4} \\ $$