Menu Close

let-f-x-y-x-2-2xy-y-2-y-3-x-5-show-that-f-x-y-has-neither-a-maximum-nor-a-minimum-at-0-0-




Question Number 214805 by universe last updated on 20/Dec/24
  let f(x,y) = x^2 −2xy+y^2 −y^3 +x^5  +show that    f(x,y) has neither a maximum nor a     minimum at (0,0)
$$\:\:\mathrm{let}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{x}^{\mathrm{2}} −\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} −\mathrm{y}^{\mathrm{3}} +\mathrm{x}^{\mathrm{5}} \:+\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{has}\:\mathrm{neither}\:\mathrm{a}\:\mathrm{maximum}\:\mathrm{nor}\:\mathrm{a}\: \\ $$$$\:\:\mathrm{minimum}\:\mathrm{at}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$
Answered by TonyCWX08 last updated on 20/Dec/24
f_x (x,y)=2x−2y+5x^4 =0  f_y (x,y)=−2x+2y−3y^2 =0    5x^4 +2x−2y=0  −2x+2y−3y^2 =0  Adding both equations give  5x^4 −3y^2 =0  5x^4 =3y^2   y=x^2 (√(5/3))    5x^4 +2x−2(x^2 (√(5/3)))=0  5x^4 +2x=2x^2 (√(5/3))  25x^8 +20x^5 +4x^2 =((20)/3)x^4   75x^8 +60x^5 +12x^2 =20x^4   75x^8 +60x^5 −20x^4 +12x^2 =0  x^2 (75x^4 +60x^3 −20x^2 +12)=0  x^2 =0  x=0⇒y=0    At (0,0)  D(0,0)  =f_(xx) (0,0)f_(yy) (0,0)−[f_(xy) (0,0)]^2   =0  Not enough information to prove.
$${f}_{{x}} \left({x},{y}\right)=\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{5}{x}^{\mathrm{4}} =\mathrm{0} \\ $$$${f}_{{y}} \left({x},{y}\right)=−\mathrm{2}{x}+\mathrm{2}{y}−\mathrm{3}{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$$$\mathrm{5}{x}^{\mathrm{4}} +\mathrm{2}{x}−\mathrm{2}{y}=\mathrm{0} \\ $$$$−\mathrm{2}{x}+\mathrm{2}{y}−\mathrm{3}{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${Adding}\:{both}\:{equations}\:{give} \\ $$$$\mathrm{5}{x}^{\mathrm{4}} −\mathrm{3}{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{5}{x}^{\mathrm{4}} =\mathrm{3}{y}^{\mathrm{2}} \\ $$$${y}={x}^{\mathrm{2}} \sqrt{\frac{\mathrm{5}}{\mathrm{3}}} \\ $$$$ \\ $$$$\mathrm{5}{x}^{\mathrm{4}} +\mathrm{2}{x}−\mathrm{2}\left({x}^{\mathrm{2}} \sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\right)=\mathrm{0} \\ $$$$\mathrm{5}{x}^{\mathrm{4}} +\mathrm{2}{x}=\mathrm{2}{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{5}}{\mathrm{3}}} \\ $$$$\mathrm{25}{x}^{\mathrm{8}} +\mathrm{20}{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{2}} =\frac{\mathrm{20}}{\mathrm{3}}{x}^{\mathrm{4}} \\ $$$$\mathrm{75}{x}^{\mathrm{8}} +\mathrm{60}{x}^{\mathrm{5}} +\mathrm{12}{x}^{\mathrm{2}} =\mathrm{20}{x}^{\mathrm{4}} \\ $$$$\mathrm{75}{x}^{\mathrm{8}} +\mathrm{60}{x}^{\mathrm{5}} −\mathrm{20}{x}^{\mathrm{4}} +\mathrm{12}{x}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{75}{x}^{\mathrm{4}} +\mathrm{60}{x}^{\mathrm{3}} −\mathrm{20}{x}^{\mathrm{2}} +\mathrm{12}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}=\mathrm{0}\Rightarrow{y}=\mathrm{0} \\ $$$$ \\ $$$${At}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$${D}\left(\mathrm{0},\mathrm{0}\right) \\ $$$$={f}_{{xx}} \left(\mathrm{0},\mathrm{0}\right){f}_{{yy}} \left(\mathrm{0},\mathrm{0}\right)−\left[{f}_{{xy}} \left(\mathrm{0},\mathrm{0}\right)\right]^{\mathrm{2}} \\ $$$$=\mathrm{0} \\ $$$${Not}\:{enough}\:{information}\:{to}\:{prove}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *