Menu Close

let-f-x-y-x-2-2xy-y-2-y-3-x-5-show-that-f-x-y-has-neither-a-maximum-nor-a-minimum-at-0-0-




Question Number 214805 by universe last updated on 20/Dec/24
  let f(x,y) = x^2 −2xy+y^2 −y^3 +x^5  +show that    f(x,y) has neither a maximum nor a     minimum at (0,0)
letf(x,y)=x22xy+y2y3+x5+showthatf(x,y)hasneitheramaximumnoraminimumat(0,0)
Answered by TonyCWX08 last updated on 20/Dec/24
f_x (x,y)=2x−2y+5x^4 =0  f_y (x,y)=−2x+2y−3y^2 =0    5x^4 +2x−2y=0  −2x+2y−3y^2 =0  Adding both equations give  5x^4 −3y^2 =0  5x^4 =3y^2   y=x^2 (√(5/3))    5x^4 +2x−2(x^2 (√(5/3)))=0  5x^4 +2x=2x^2 (√(5/3))  25x^8 +20x^5 +4x^2 =((20)/3)x^4   75x^8 +60x^5 +12x^2 =20x^4   75x^8 +60x^5 −20x^4 +12x^2 =0  x^2 (75x^4 +60x^3 −20x^2 +12)=0  x^2 =0  x=0⇒y=0    At (0,0)  D(0,0)  =f_(xx) (0,0)f_(yy) (0,0)−[f_(xy) (0,0)]^2   =0  Not enough information to prove.
fx(x,y)=2x2y+5x4=0fy(x,y)=2x+2y3y2=05x4+2x2y=02x+2y3y2=0Addingbothequationsgive5x43y2=05x4=3y2y=x2535x4+2x2(x253)=05x4+2x=2x25325x8+20x5+4x2=203x475x8+60x5+12x2=20x475x8+60x520x4+12x2=0x2(75x4+60x320x2+12)=0x2=0x=0y=0At(0,0)D(0,0)=fxx(0,0)fyy(0,0)[fxy(0,0)]2=0Notenoughinformationtoprove.

Leave a Reply

Your email address will not be published. Required fields are marked *