Question Number 214838 by isaac_newton_2 last updated on 21/Dec/24
$$ \\ $$Determine the unit Vector perpendicular in plane of A = 2i-6j-3k , B = 4i+3j-k
Commented by TonyCWX08 last updated on 21/Dec/24
$${Are}\:{you}\:{sure}\:{A}\:{and}\:{B}\:{are}\:{planes},\:{and}\:{not}\:{vectors}? \\ $$
Commented by mr W last updated on 21/Dec/24
$${he}\:{means}\:{unit}\:{vector}\:{which}\:{is} \\ $$$${perpendicular}\:{to}\:{the}\:{plane}\:{containing} \\ $$$${vectors}\:{A}\:{and}\:{B}. \\ $$
Commented by TonyCWX08 last updated on 21/Dec/24
$${If}\:{that}\:{so},\:{then}\:{alright}. \\ $$
Answered by mr W last updated on 21/Dec/24
$${C}={A}×{B}=\left(\mathrm{2},−\mathrm{6},−\mathrm{3}\right)×\left(\mathrm{4},\mathrm{3},−\mathrm{1}\right) \\ $$$$\:\:\:\:=\left(\mathrm{15},−\mathrm{10},\mathrm{30}\right) \\ $$$$\frac{{C}}{\mid{C}\mid}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{15}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} +\mathrm{30}^{\mathrm{2}} }}\left(\mathrm{15},−\mathrm{10},\mathrm{30}\right) \\ $$$$\:\:\:\:\:\:=\left(\frac{\mathrm{3}}{\mathrm{7}},−\frac{\mathrm{2}}{\mathrm{7}},\frac{\mathrm{6}}{\mathrm{7}}\right)\:\checkmark \\ $$
Commented by mr W last updated on 21/Dec/24
Answered by MrGaster last updated on 21/Dec/24