Menu Close

log-2-x-log-3-x-1-5-x-




Question Number 215089 by golsendro last updated on 28/Dec/24
  log _2  x + log _3  (x+1) = 5    x = ?
$$\:\:\mathrm{log}\:_{\mathrm{2}} \:\mathrm{x}\:+\:\mathrm{log}\:_{\mathrm{3}} \:\left(\mathrm{x}+\mathrm{1}\right)\:=\:\mathrm{5}\: \\ $$$$\:\mathrm{x}\:=\:? \\ $$
Answered by efronzo1 last updated on 28/Dec/24
   log _3 (x+1)−2 = 3−log _2 x    log _3 (((x+1)/9)) = log _2 ((8/x))    log _3 (1)= log _2 (1)=0    ((x+1)/9)=1 and (8/x)=1    x = 8
$$\:\:\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{x}+\mathrm{1}\right)−\mathrm{2}\:=\:\mathrm{3}−\mathrm{log}\:_{\mathrm{2}} \mathrm{x} \\ $$$$\:\:\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{9}}\right)\:=\:\mathrm{log}\:_{\mathrm{2}} \left(\frac{\mathrm{8}}{\mathrm{x}}\right) \\ $$$$\:\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{1}\right)=\:\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\:\frac{\mathrm{x}+\mathrm{1}}{\mathrm{9}}=\mathrm{1}\:\mathrm{and}\:\frac{\mathrm{8}}{\mathrm{x}}=\mathrm{1} \\ $$$$\:\:\mathrm{x}\:=\:\mathrm{8}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *