Question Number 215126 by mr W last updated on 29/Dec/24
Commented by Ghisom last updated on 29/Dec/24
$${L}\:\mathrm{must}\:\mathrm{be}\:\mathrm{horizontal}\:\mathrm{for}\:{r}\:\rightarrow\:\mathrm{max} \\ $$$$\mathrm{or}\:\mathrm{am}\:\mathrm{I}\:\mathrm{missing}\:\mathrm{something}? \\ $$
Commented by mr W last updated on 29/Dec/24
$${an}\:{uniform}\:{rod}\:{with}\:{length}\:{L} \\ $$$${rests}\:{inclined}\:{in}\:{a}\:{slippery}\:{parabolic} \\ $$$${cup}\:{as}\:{shown}. \\ $$$${find}\:{the}\:{radius}\:{of}\:{the}\:{largest}\:{circle} \\ $$$${which}\:{can}\:{be}\:{placed}\:{under}\:{the}\:{rod}. \\ $$
Commented by mr W last updated on 29/Dec/24
$${the}\:{question}\:{requests}\:“{inclined}'' \\ $$$${position}\:{of}\:{the}\:{rod}. \\ $$
Answered by mr W last updated on 30/Dec/24
Commented by mr W last updated on 31/Dec/24
$${let}'{s}\:{look}\:{at}\:{the}\:{general}\:{case}\: \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{{k}}\:{with}\:{k}=\mathrm{1}\:{or}\:{not} \\ $$$${say}\:{A}\left(−{p},\:\frac{{p}^{\mathrm{2}} }{{k}}\right) \\ $$$${B}\left({q},\:\frac{{q}^{\mathrm{2}} }{{k}}\right) \\ $$$${if}\:{p}={q}=\frac{{L}}{\mathrm{2}},\:{the}\:{rod}\:{rests}\:{horizontally}. \\ $$$${for}\:{inclined}\:{positions}\:{of}\:{rod},\:{p}\neq{q}. \\ $$$$\mathrm{tan}\:\phi=−\frac{{dy}}{{dx}}=\frac{\mathrm{2}{p}}{{k}} \\ $$$$\mathrm{tan}\:\varphi=\frac{{dy}}{{dx}}=\frac{\mathrm{2}{q}}{{k}} \\ $$$$\alpha=\frac{\pi}{\mathrm{2}}−\phi−\theta \\ $$$$\beta=\frac{\pi}{\mathrm{2}}−\varphi+\theta \\ $$$$\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\phi}=\frac{{DC}}{{AC}}=\frac{{DC}}{{BC}}=\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\varphi} \\ $$$$\frac{\mathrm{cos}\:\left(\phi+\theta\right)}{\mathrm{sin}\:\phi}=\frac{\mathrm{cos}\:\left(\varphi−\theta\right)}{\mathrm{sin}\:\varphi} \\ $$$$\frac{\mathrm{1}−\mathrm{tan}\:\phi\:\mathrm{tan}\:\theta}{\mathrm{tan}\:\phi}=\frac{\mathrm{1}+\mathrm{tan}\:\varphi\:\mathrm{tan}\:\theta}{\mathrm{tan}\:\varphi} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{tan}\:\phi}−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}\right)=\frac{{k}}{\mathrm{4}}\left(\frac{\mathrm{1}}{{p}}−\frac{\mathrm{1}}{{q}}\right)=\frac{{k}\left({q}−{p}\right)}{\mathrm{4}{pq}} \\ $$$${on}\:{the}\:{other}\:{side} \\ $$$$\mathrm{tan}\:\theta=\frac{{q}^{\mathrm{2}} −{p}^{\mathrm{2}} }{{k}\left({q}+{p}\right)}=\frac{{q}−{p}}{{k}} \\ $$$$\frac{{q}−{p}}{{k}}=\frac{{k}\left({q}−{p}\right)}{\mathrm{4}{pq}} \\ $$$${since}\:{q}\neq{p}, \\ $$$$\Rightarrow{pq}=\frac{{k}^{\mathrm{2}} }{\mathrm{4}}\:\:\:…\left({i}\right) \\ $$$${say}\:{m}=\mathrm{tan}\:\theta \\ $$$$\Rightarrow{q}−{p}={mk}\:\:\:…\left({ii}\right) \\ $$$${q},\:−{p}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{2}} −{mkz}−\frac{{k}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow{q}=\frac{{k}}{\mathrm{2}}\left(\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }+{m}\right) \\ $$$$\Rightarrow{p}=\frac{{k}}{\mathrm{2}}\left(\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }−{m}\right) \\ $$$${AB}=\sqrt{\left({p}+{q}\right)^{\mathrm{2}} +\left(\frac{{q}^{\mathrm{2}} }{{k}}−\frac{{p}^{\mathrm{2}} }{{k}}\right)^{\mathrm{2}} }={L} \\ $$$$\left({p}+{q}\right)\sqrt{\mathrm{1}+\left(\frac{{q}−{p}}{{k}}\right)^{\mathrm{2}} }={L} \\ $$$$\left({p}+{q}\right)\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }={L} \\ $$$${k}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)={L} \\ $$$$\Rightarrow\mathrm{1}+{m}^{\mathrm{2}} =\frac{{L}}{{k}} \\ $$$$\Rightarrow{m}=\sqrt{\frac{{L}}{{k}}−\mathrm{1}}\:>\mathrm{0}\:\Rightarrow{L}>{k} \\ $$$$\Rightarrow{p}=\frac{{k}}{\mathrm{2}}\left(\sqrt{\frac{{L}}{{k}}}−\sqrt{\frac{{L}}{{k}}−\mathrm{1}}\right) \\ $$$$\Rightarrow{q}=\frac{{k}}{\mathrm{2}}\left(\sqrt{\frac{{L}}{{k}}}+\sqrt{\frac{{L}}{{k}}−\mathrm{1}}\right) \\ $$$${we}\:{can}\:{see} \\ $$$$\mathrm{tan}\:\phi\:\mathrm{tan}\:\varphi=\frac{\mathrm{4}{pq}}{{k}^{\mathrm{2}} }=\frac{\mathrm{4}}{{k}^{\mathrm{2}} }×\frac{{k}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1}, \\ $$$${that}\:{means}\:{the}\:{tangent}\:{lines} \\ $$$$\left({and}\:{also}\:{the}\:{normals}\right)\:{at}\:{the}\:{ends}\: \\ $$$${of}\:{the}\:{rod}\:{are}\:{perpendicular}\:{to}\:{each} \\ $$$${other}. \\ $$$$ \\ $$$${eqn}.\:{of}\:{rod}: \\ $$$${y}=\frac{{p}^{\mathrm{2}} }{{k}}+\left({x}+{p}\right){m} \\ $$$${mx}−{y}+\frac{{p}^{\mathrm{2}} }{{k}}+{pm}=\mathrm{0} \\ $$$$\Rightarrow{mx}−{y}+\frac{{k}}{\mathrm{4}}=\mathrm{0} \\ $$$$ \\ $$$${say}\:{the}\:{circle}\:{with}\:{radius}\:{r}\: \\ $$$${tangents}\:{the}\:{parabola}\:{at}\:{S}\left({s},\:\frac{{s}^{\mathrm{2}} }{{k}}\right) \\ $$$$\mathrm{tan}\:\delta=\frac{{dy}}{{dx}}=\frac{\mathrm{2}{s}}{{k}} \\ $$$${G}={center}\:{of}\:{circle} \\ $$$${x}_{{G}} ={s}−{r}\:\mathrm{sin}\:\delta={s}−\frac{\mathrm{2}{sr}}{\:\sqrt{\mathrm{4}{s}^{\mathrm{2}} +{k}^{\mathrm{2}} }} \\ $$$${y}_{{G}} =\frac{{s}^{\mathrm{2}} }{{k}}+{r}\:\mathrm{cos}\:\delta=\frac{{s}^{\mathrm{2}} }{{k}}+\frac{{kr}}{\:\sqrt{\mathrm{4}{s}^{\mathrm{2}} +{k}^{\mathrm{2}} }} \\ $$$${r}=\frac{{m}\left({s}−\frac{\mathrm{2}{sr}}{\:\sqrt{\mathrm{4}{s}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\right)−\frac{{s}^{\mathrm{2}} }{{k}}−\frac{{kr}}{\:\sqrt{\mathrm{4}{s}^{\mathrm{2}} +{k}^{\mathrm{2}} }}+\frac{{k}}{\mathrm{4}}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }} \\ $$$$\left(\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }+\frac{\mathrm{2}{ms}+{k}}{\:\sqrt{\mathrm{4}{s}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\right){r}={ms}−\frac{{s}^{\mathrm{2}} }{{k}}+\frac{{k}}{\mathrm{4}} \\ $$$${r}=\frac{{ms}−\frac{{s}^{\mathrm{2}} }{{k}}+\frac{{k}}{\mathrm{4}}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }+\frac{\mathrm{2}{ms}+{k}}{\:\sqrt{\mathrm{4}{s}^{\mathrm{2}} +{k}^{\mathrm{2}} }}} \\ $$$$\frac{{r}}{{k}}=\frac{\frac{{ms}}{{k}}−\frac{{s}^{\mathrm{2}} }{{k}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }+\frac{\frac{\mathrm{2}{ms}}{{k}}+\mathrm{1}}{\:\sqrt{\frac{\mathrm{4}{s}^{\mathrm{2}} }{{k}^{\mathrm{2}} }+\mathrm{1}}}} \\ $$$${let}\:\xi=\frac{{s}}{{k}} \\ $$$$\Rightarrow\frac{{r}}{{k}}=\frac{{m}\xi−\xi^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }+\frac{\mathrm{2}{m}\xi+\mathrm{1}}{\:\sqrt{\mathrm{4}\xi^{\mathrm{2}} +\mathrm{1}}}}={f}\left(\xi\right) \\ $$$${for}\:{maximum}\:{r},\:{f}'\left(\xi\right)=\mathrm{0} \\ $$$$ \\ $$$$\underline{{alternative}\:{way}:} \\ $$$${for}\:{maximum}\:{circle}\:{the}\:{tangent}\:{at} \\ $$$${S}\left({s},\:\frac{{s}^{\mathrm{2}} }{{k}}\right)\:{must}\:{be}\:{parallel}\:{to}\:{the}\:{rod}. \\ $$$$\mathrm{tan}\:\delta=\frac{\mathrm{2}{s}}{{k}}={m} \\ $$$$\Rightarrow{s}=\frac{{km}}{\mathrm{2}} \\ $$$$\mathrm{2}{r}_{{max}} =\frac{\frac{{km}^{\mathrm{2}} }{\mathrm{2}}−\frac{{k}^{\mathrm{2}} {m}^{\mathrm{2}} }{\mathrm{4}{k}}+\frac{{k}}{\mathrm{4}}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}=\frac{{k}\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}{\mathrm{4}}=\frac{\sqrt{{Lk}}}{\mathrm{4}} \\ $$$$\Rightarrow{r}_{{max}} =\frac{\sqrt{{Lk}}}{\mathrm{8}} \\ $$
Commented by mr W last updated on 30/Dec/24
Commented by mr W last updated on 30/Dec/24
Commented by mr W last updated on 30/Dec/24
$${we}\:{see}\:{the}\:{similarity}\:{to}\:{the}\:{problem} \\ $$$${discussed}\:{in}\:{Q}\mathrm{215094}: \\ $$
Commented by mr W last updated on 30/Dec/24
Commented by mr W last updated on 30/Dec/24