Menu Close

If-the-quadratic-equation-3x-2-8x-2k-0-has-two-different-negative-real-roots-Determine-the-range-of-k-For-example-0-lt-k-lt-3-or-I-will-force-you-to-determine-




Question Number 215166 by MathematicalUser2357 last updated on 30/Dec/24
If the quadratic equation 3x^2 +8x+2k=0 has two different negative real roots,  Determine the range of k (For example, 0<k<3) or I will force you to determine
$$\mathrm{If}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation}\:\mathrm{3}{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{2}{k}=\mathrm{0}\:\mathrm{has}\:\mathrm{two}\:\mathrm{different}\:\mathrm{negative}\:\mathrm{real}\:\mathrm{roots}, \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{k}\:\left(\mathrm{For}\:\mathrm{example},\:\mathrm{0}<{k}<\mathrm{3}\right)\:\mathrm{or}\:\mathrm{I}\:\mathrm{will}\:\mathrm{force}\:\mathrm{you}\:\mathrm{to}\:\mathrm{determine} \\ $$
Answered by A5T last updated on 30/Dec/24
x_(1,2) =((−8+_− (√(64−24k)))/6)=((−8+_− 2(√(16−6k)))/6)  =((−4+_− (√(16−6k)))/3);   16−6k≠0 ∧ 16−6k>0⇒k<(8/3) ∧ −4+(√(16−6k))<0  ⇒k<(8/3) ∧ 16−6k≤16⇒k>0  ⇒0<k<(8/3)
$$\mathrm{x}_{\mathrm{1},\mathrm{2}} =\frac{−\mathrm{8}\underset{−} {+}\sqrt{\mathrm{64}−\mathrm{24k}}}{\mathrm{6}}=\frac{−\mathrm{8}\underset{−} {+}\mathrm{2}\sqrt{\mathrm{16}−\mathrm{6k}}}{\mathrm{6}} \\ $$$$=\frac{−\mathrm{4}\underset{−} {+}\sqrt{\mathrm{16}−\mathrm{6k}}}{\mathrm{3}};\: \\ $$$$\mathrm{16}−\mathrm{6k}\neq\mathrm{0}\:\wedge\:\mathrm{16}−\mathrm{6k}>\mathrm{0}\Rightarrow\mathrm{k}<\frac{\mathrm{8}}{\mathrm{3}}\:\wedge\:−\mathrm{4}+\sqrt{\mathrm{16}−\mathrm{6k}}<\mathrm{0} \\ $$$$\Rightarrow\mathrm{k}<\frac{\mathrm{8}}{\mathrm{3}}\:\wedge\:\mathrm{16}−\mathrm{6k}\leqslant\mathrm{16}\Rightarrow\mathrm{k}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{0}<\mathrm{k}<\frac{\mathrm{8}}{\mathrm{3}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *