Question Number 215167 by MathematicalUser2357 last updated on 30/Dec/24
$$\mathrm{If}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation}\:{x}^{\mathrm{2}} −\mathrm{2}{x}−{m}+\mathrm{1}=\mathrm{0}\:\mathrm{has}\:\mathrm{two}\:\mathrm{different}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{roots}\:\alpha,\:\beta, \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{m}\:\left(\mathrm{For}\:\mathrm{example},\:\mathrm{0}<{m}<\mathrm{3}\right)\:\mathrm{or}\:\mathrm{I}\:\mathrm{will}\:\mathrm{force}\:\mathrm{you}\:\mathrm{to}\:\mathrm{determine} \\ $$
Answered by A5T last updated on 30/Dec/24
$$\mathrm{x}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{2}\underset{−} {+}\sqrt{\mathrm{4}−\mathrm{4}\left(\mathrm{1}−\mathrm{m}\right)}}{\mathrm{2}}=\mathrm{1}\underset{−} {+}\sqrt{\mathrm{m}} \\ $$$$\mathrm{m}>\mathrm{0}\:\wedge\:\mathrm{1}−\sqrt{\mathrm{m}}>\mathrm{0}\Rightarrow\mathrm{m}>\mathrm{0}\:\wedge\:\mathrm{m}<\mathrm{1} \\ $$$$\Rightarrow\mathrm{0}<\mathrm{m}<\mathrm{1} \\ $$