Menu Close

Question-215147




Question Number 215147 by AlagaIbile last updated on 30/Dec/24
Answered by A5T last updated on 30/Dec/24
Commented by A5T last updated on 30/Dec/24
OP=(√((4.5−r)^2 −(2.5−r)^2 ))=(√(2(7−2r)))  ⇒GO=(√(OP^2 +GP^2 ))=(√(2(7−2r)+(2+r)^2 ))=(√(r^2 +18))  ⇒GC=(√(GO^2 −OC^2 ))=(√(r^2 +18−r^2 ))=(√(18))=3(√2)
$$\mathrm{OP}=\sqrt{\left(\mathrm{4}.\mathrm{5}−\mathrm{r}\right)^{\mathrm{2}} −\left(\mathrm{2}.\mathrm{5}−\mathrm{r}\right)^{\mathrm{2}} }=\sqrt{\mathrm{2}\left(\mathrm{7}−\mathrm{2r}\right)} \\ $$$$\Rightarrow\mathrm{GO}=\sqrt{\mathrm{OP}^{\mathrm{2}} +\mathrm{GP}^{\mathrm{2}} }=\sqrt{\mathrm{2}\left(\mathrm{7}−\mathrm{2r}\right)+\left(\mathrm{2}+\mathrm{r}\right)^{\mathrm{2}} }=\sqrt{\mathrm{r}^{\mathrm{2}} +\mathrm{18}} \\ $$$$\Rightarrow\mathrm{GC}=\sqrt{\mathrm{GO}^{\mathrm{2}} −\mathrm{OC}^{\mathrm{2}} }=\sqrt{\mathrm{r}^{\mathrm{2}} +\mathrm{18}−\mathrm{r}^{\mathrm{2}} }=\sqrt{\mathrm{18}}=\mathrm{3}\sqrt{\mathrm{2}} \\ $$
Answered by mr W last updated on 30/Dec/24
Commented by mr W last updated on 30/Dec/24
let′s look at the general case.  R=((a+b)/2)  OB=R−a=((b−a)/2)  GA^2 =(((a+b)/2)−r)^2 −(((b−a)/2)−r)^2 +(a+r)^2            =a(a+b)+r^2   GC^2 =GA^2 −r^2 =a(a+b)  ⇒GC=(√(a(a+b)))=(√(2×(2+7)))=3(√2)
$${let}'{s}\:{look}\:{at}\:{the}\:{general}\:{case}. \\ $$$${R}=\frac{{a}+{b}}{\mathrm{2}} \\ $$$${OB}={R}−{a}=\frac{{b}−{a}}{\mathrm{2}} \\ $$$${GA}^{\mathrm{2}} =\left(\frac{{a}+{b}}{\mathrm{2}}−{r}\right)^{\mathrm{2}} −\left(\frac{{b}−{a}}{\mathrm{2}}−{r}\right)^{\mathrm{2}} +\left({a}+{r}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:={a}\left({a}+{b}\right)+{r}^{\mathrm{2}} \\ $$$${GC}^{\mathrm{2}} ={GA}^{\mathrm{2}} −{r}^{\mathrm{2}} ={a}\left({a}+{b}\right) \\ $$$$\Rightarrow{GC}=\sqrt{{a}\left({a}+{b}\right)}=\sqrt{\mathrm{2}×\left(\mathrm{2}+\mathrm{7}\right)}=\mathrm{3}\sqrt{\mathrm{2}} \\ $$
Commented by mr W last updated on 30/Dec/24
GC is independent from the size of  the small circle.
$${GC}\:{is}\:{independent}\:{from}\:{the}\:{size}\:{of} \\ $$$${the}\:{small}\:{circle}. \\ $$
Commented by mr W last updated on 30/Dec/24
Commented by ajfour last updated on 30/Dec/24
https://youtu.be/qdhFOxn2SzU?si=QwAhflQzh-f_rJ8L my first video lecture on Inductance

Leave a Reply

Your email address will not be published. Required fields are marked *