Question Number 215180 by hardmath last updated on 30/Dec/24
$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{y}\:\:=\:\:\mathrm{31}}\\{\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{x}\:\:=\:\:\mathrm{41}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\:\left(\mathrm{x}\:;\:\mathrm{y}\right)\:=\:? \\ $$
Commented by Ghisom last updated on 31/Dec/24
$$\mathrm{obviously} \\ $$$$\mathrm{5}^{\mathrm{2}} +\mathrm{6}=\mathrm{31} \\ $$$$\mathrm{6}^{\mathrm{2}} +\mathrm{5}=\mathrm{41} \\ $$
Answered by Ghisom last updated on 31/Dec/24
$${y}=\mathrm{31}−{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{31}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} +{x}−\mathrm{41}=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −\mathrm{62}{x}^{\mathrm{2}} +{x}+\mathrm{920}=\mathrm{0} \\ $$$$\left({x}−\mathrm{5}\right)\left({x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{37}{x}−\mathrm{184}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{5}\:\Rightarrow\:{y}_{\mathrm{1}} =\mathrm{6} \\ $$$$\mathrm{it}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{make}\:\mathrm{much}\:\mathrm{sense}\:\mathrm{to}\:\mathrm{exactly} \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree} \\ $$$${x}_{\mathrm{2}} \approx−\mathrm{6}.\mathrm{15360}\:\Rightarrow\:{y}_{\mathrm{2}} \approx−\mathrm{6}.\mathrm{86685} \\ $$$${x}_{\mathrm{3}} \approx−\mathrm{4}.\mathrm{92173}\:\Rightarrow\:{y}_{\mathrm{3}} \approx\mathrm{6}.\mathrm{77656} \\ $$$${x}_{\mathrm{4}} \approx\mathrm{6}.\mathrm{07534}\:\Rightarrow\:{y}_{\mathrm{4}} \approx−\mathrm{5}.\mathrm{90971} \\ $$