Menu Close

x-p-1-1-x-n-lnln-1-x-dx-p-n-gt-0-




Question Number 215190 by MrGaster last updated on 31/Dec/24
∫(x^(p−1) /(1+x^n ))lnln(1/x)dx,p,n>0
$$\int\frac{{x}^{{p}−\mathrm{1}} }{\mathrm{1}+{x}^{{n}} }\mathrm{lnln}\frac{\mathrm{1}}{{x}}{dx},{p},{n}>\mathrm{0} \\ $$
Answered by MathematicalUser2357 last updated on 31/Dec/24
No result found in terms of standard mathematical functions
$$\mathrm{No}\:\mathrm{result}\:\mathrm{found}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{standard}\:\mathrm{mathematical}\:\mathrm{functions} \\ $$
Answered by JamesZhou last updated on 03/Jan/25
Commented by MathematicalUser2357 last updated on 04/Jan/25
Can′t you know the comment function  −(γ/n)Φ(−1,1,(p/n))−[(d/ds) (1/n^s )Φ(−1,s,(p/n))]_(s=1)
$$\mathrm{Can}'\mathrm{t}\:\mathrm{you}\:\mathrm{know}\:\mathrm{the}\:\mathrm{comment}\:\mathrm{function} \\ $$$$−\frac{\gamma}{{n}}\Phi\left(−\mathrm{1},\mathrm{1},\frac{{p}}{{n}}\right)−\left[\frac{{d}}{{ds}}\:\frac{\mathrm{1}}{{n}^{{s}} }\Phi\left(−\mathrm{1},{s},\frac{{p}}{{n}}\right)\right]_{{s}=\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *