Menu Close

1-cos-x-1-sin-x-5-4-1-cos-x-1-sin-x-




Question Number 215277 by efronzo1 last updated on 02/Jan/25
   (1+cos x)(1+sin x) = (5/4)     (1−cos x)(1−sin x) = ?
$$\:\:\:\left(\mathrm{1}+\mathrm{cos}\:\mathrm{x}\right)\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)\:=\:\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\:\:\:\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)\left(\mathrm{1}−\mathrm{sin}\:\mathrm{x}\right)\:=\:? \\ $$
Answered by MrGaster last updated on 02/Jan/25
(1+cos x)(1+sin x)∙(1−cos x)(1−sin x)_(Commutative law of multiplication) =((5/4))(1−cos x)(1−sin x)  (1−cos^2 x)(1−sin^2 x)=((5/4))(1−cos x)(1−sin x)  (sin^2 x)(cos^2 x)=((5/4))(1−cos x)(1−sin x)  (1/4)sin^2 (2x)=((5/4))(1−cos x)(1−sin x)  (1−cos x)(1−sin x)=((sin^2 (2x))/5)
$$\underset{\mathrm{Commutative}\:\mathrm{law}\:\mathrm{of}\:\mathrm{multiplication}} {\underbrace{\left(\mathrm{1}+\mathrm{cos}\:{x}\right)\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\centerdot\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}−\mathrm{sin}\:{x}\right)}}=\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}−\mathrm{sin}\:{x}\right) \\ $$$$\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} {x}\right)\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} {x}\right)=\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}−\mathrm{sin}\:{x}\right) \\ $$$$\left(\mathrm{sin}^{\mathrm{2}} {x}\right)\left(\mathrm{cos}^{\mathrm{2}} {x}\right)=\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}−\mathrm{sin}\:{x}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)=\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}−\mathrm{sin}\:{x}\right) \\ $$$$\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}−\mathrm{sin}\:{x}\right)=\frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *