Menu Close

Show-that-x-64-and-y-729-x-1-3-y-1-3-13-x-y-35-




Question Number 215282 by arkanmathematics63 last updated on 02/Jan/25
Show that x=64 and y=729   (x)^(1/3) +(y)^(1/3) =13  (√x)+(√y)=35
$${Show}\:{that}\:{x}=\mathrm{64}\:{and}\:{y}=\mathrm{729}\: \\ $$$$\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}=\mathrm{13} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\mathrm{35} \\ $$
Commented by Ghisom last updated on 02/Jan/25
to “show that x=64 and y=729” it′s enough  to insert:  ((64))^(1/3) +((729))^(1/3) =4+9=13  (√(64))+(√(729))=8+27=35
$$\mathrm{to}\:“\mathrm{show}\:\mathrm{that}\:{x}=\mathrm{64}\:\mathrm{and}\:{y}=\mathrm{729}''\:\mathrm{it}'\mathrm{s}\:\mathrm{enough} \\ $$$$\mathrm{to}\:\mathrm{insert}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{64}}+\sqrt[{\mathrm{3}}]{\mathrm{729}}=\mathrm{4}+\mathrm{9}=\mathrm{13} \\ $$$$\sqrt{\mathrm{64}}+\sqrt{\mathrm{729}}=\mathrm{8}+\mathrm{27}=\mathrm{35} \\ $$
Commented by TonyCWX08 last updated on 02/Jan/25
You got a point...................................
$${You}\:{got}\:{a}\:{point}…………………………….. \\ $$
Commented by Ghisom last updated on 02/Jan/25
...btw there are no solutions ∉R
$$…\mathrm{btw}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{solutions}\:\notin\mathbb{R} \\ $$
Answered by TonyCWX08 last updated on 02/Jan/25
Let u=x^6 , v=y^6   u^2 +v^2 =13⇒p_2 =13  u^3 +v^3 =35⇒p_3 =35    By Newton′s Identity,  p_1 =e_1     p_2 =e_1 ^2 −2e_2 ⇒e_2 =((p_1 ^2 −13)/2)    p_3 =e_1 ^3 −2e_1 e_2 +3e_3   35=p_1 ^3 −2(p_1 )(((p_1 ^2 −13)/2))  ((39p_1 −p_1 ^3 )/2)=35  39p_1 −p_1 ^3 =70  p_1 =−7, 2, 5    u+v=−7  u+v=2  u+v=5    Case 1:  u+v=−7⇒u=−7−v  (−7−v)^2 +v^2 =13⇒No Solution in real world    Case 2:  u+v=2⇒u=2−v  (2−v)^2 +v^2 =13  ⇒(u,v)=(2,3) or (3,2)  ⇒(x,y)=(64,729) or (729,64)    Case 3:  u+v=5⇒u=5−v  (5−v)^2 +v^2 =13  ⇒(u,v)=(((2−(√(22)))/2),((2+(√(22)))/2)) or (((2+(√(22)))/2),((2−(√(22)))/2))  ⇒(x,y)=No solution in real world
$${Let}\:{u}={x}^{\mathrm{6}} ,\:{v}={y}^{\mathrm{6}} \\ $$$${u}^{\mathrm{2}} +{v}^{\mathrm{2}} =\mathrm{13}\Rightarrow{p}_{\mathrm{2}} =\mathrm{13} \\ $$$${u}^{\mathrm{3}} +{v}^{\mathrm{3}} =\mathrm{35}\Rightarrow{p}_{\mathrm{3}} =\mathrm{35} \\ $$$$ \\ $$$${By}\:{Newton}'{s}\:{Identity}, \\ $$$${p}_{\mathrm{1}} ={e}_{\mathrm{1}} \\ $$$$ \\ $$$${p}_{\mathrm{2}} ={e}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{e}_{\mathrm{2}} \Rightarrow{e}_{\mathrm{2}} =\frac{{p}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{13}}{\mathrm{2}} \\ $$$$ \\ $$$${p}_{\mathrm{3}} ={e}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{2}{e}_{\mathrm{1}} {e}_{\mathrm{2}} +\mathrm{3}{e}_{\mathrm{3}} \\ $$$$\mathrm{35}={p}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{2}\left({p}_{\mathrm{1}} \right)\left(\frac{{p}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{13}}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{39}{p}_{\mathrm{1}} −{p}_{\mathrm{1}} ^{\mathrm{3}} }{\mathrm{2}}=\mathrm{35} \\ $$$$\mathrm{39}{p}_{\mathrm{1}} −{p}_{\mathrm{1}} ^{\mathrm{3}} =\mathrm{70} \\ $$$${p}_{\mathrm{1}} =−\mathrm{7},\:\mathrm{2},\:\mathrm{5} \\ $$$$ \\ $$$${u}+{v}=−\mathrm{7} \\ $$$${u}+{v}=\mathrm{2} \\ $$$${u}+{v}=\mathrm{5} \\ $$$$ \\ $$$${Case}\:\mathrm{1}: \\ $$$${u}+{v}=−\mathrm{7}\Rightarrow{u}=−\mathrm{7}−{v} \\ $$$$\left(−\mathrm{7}−{v}\right)^{\mathrm{2}} +{v}^{\mathrm{2}} =\mathrm{13}\Rightarrow{No}\:{Solution}\:{in}\:{real}\:{world} \\ $$$$ \\ $$$${Case}\:\mathrm{2}: \\ $$$${u}+{v}=\mathrm{2}\Rightarrow{u}=\mathrm{2}−{v} \\ $$$$\left(\mathrm{2}−{v}\right)^{\mathrm{2}} +{v}^{\mathrm{2}} =\mathrm{13} \\ $$$$\Rightarrow\left({u},{v}\right)=\left(\mathrm{2},\mathrm{3}\right)\:{or}\:\left(\mathrm{3},\mathrm{2}\right) \\ $$$$\Rightarrow\left({x},{y}\right)=\left(\mathrm{64},\mathrm{729}\right)\:{or}\:\left(\mathrm{729},\mathrm{64}\right) \\ $$$$ \\ $$$${Case}\:\mathrm{3}: \\ $$$${u}+{v}=\mathrm{5}\Rightarrow{u}=\mathrm{5}−{v} \\ $$$$\left(\mathrm{5}−{v}\right)^{\mathrm{2}} +{v}^{\mathrm{2}} =\mathrm{13} \\ $$$$\Rightarrow\left({u},{v}\right)=\left(\frac{\mathrm{2}−\sqrt{\mathrm{22}}}{\mathrm{2}},\frac{\mathrm{2}+\sqrt{\mathrm{22}}}{\mathrm{2}}\right)\:{or}\:\left(\frac{\mathrm{2}+\sqrt{\mathrm{22}}}{\mathrm{2}},\frac{\mathrm{2}−\sqrt{\mathrm{22}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\left({x},{y}\right)={No}\:{solution}\:{in}\:{real}\:{world} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *