Menu Close

Find-the-type-of-triangle-such-that-the-following-relationship-holds-between-its-angles-tan-B-tan-C-tan-2-B-C-2-




Question Number 215349 by mnjuly1970 last updated on 03/Jan/25
      Find the type of triangle      such that the following       relationship holds between   its angles.           tan (B)tan(C)= tan^2 (((B+C)/2) )    ■
Findthetypeoftrianglesuchthatthefollowingrelationshipholdsbetweenitsangles.tan(B)tan(C)=tan2(B+C2)◼
Answered by MrGaster last updated on 04/Jan/25
tan(B)tan(C)=tan^2 (((B+C)/2))  =tan^2 (((π−A)/2))  =cot^2 ((A/2))  tan(B)tan(C)=(((cos((A/2)))/(sin((A/2)))))^2                                 =(((1+cos(A))/(1−cos(A))))  tan(B)tan(C)=(((cos((A/2)))/(sin((A/2))^2 )))^2                                 =(((1+cos(A))/(1−cos(A))))  tan(B)tan(C)=(((1+cos(B+C))/(1−cos(B+C))))                                =(((1+(cos(B)cos(C)−sin(B)sin(C))/(1−(cos(B)cos(C)−sin(B)sin(C)))))                                             =(((cos(B)cos(C)+sin(B)sin(C)+sin(B)sin(C)))/((cos(B)cos(A)+sin(B)sin(C)−sin(B)sin(C))))                                                                   = (((cos(B−C)+sin(B)sin(C))/(cos(B−C))))                               =1+tan(B)tan(C)                                            tan(B)tan(C)=1+tan(B)tan(C)              tan(B)tan(C)=tan^2 (((B+C)/2))                                            =tan^2 (((π−A)/2))                                           =cot^2 ((A/2))              tan(B)tan(C)=1              tan(B)tan(C)=tan((π/4))tan((π/4))                   B=C=(π/4)                  A=π−(B+C)=(π/2)  ∴△ABC is a right isosecles triangle
tan(B)tan(C)=tan2(B+C2)=tan2(πA2)=cot2(A2)tan(B)tan(C)=(cos(A2)sin(A2))2=(1+cos(A)1cos(A))tan(B)tan(C)=(cos(A2)sin(A2)2)2=(1+cos(A)1cos(A))tan(B)tan(C)=(1+cos(B+C)1cos(B+C))=(1+(cos(B)cos(C)sin(B)sin(C)1(cos(B)cos(C)sin(B)sin(C)))=(cos(B)cos(C)+sin(B)sin(C)+sin(B)sin(C))(cos(B)cos(A)+sin(B)sin(C)sin(B)sin(C))=(cos(BC)+sin(B)sin(C)cos(BC))=1+tan(B)tan(C)tan(B)tan(C)=1+tan(B)tan(C)tan(B)tan(C)=tan2(B+C2)=tan2(πA2)=cot2(A2)tan(B)tan(C)=1tan(B)tan(C)=tan(π4)tan(π4)B=C=π4A=π(B+C)=π2ABCisarightisoseclestriangle
Commented by mnjuly1970 last updated on 05/Jan/25
thx sir
thxsir

Leave a Reply

Your email address will not be published. Required fields are marked *