Menu Close

Solve-x-2-a-y-z-2-y-2-b-z-x-2-z-2-c-x-y-2-




Question Number 215356 by Abdullahrussell last updated on 04/Jan/25
 Solve:    x^2 =a+(y−z)^2     y^2 =b+(z−x)^2     z^2 =c+(x−y)^2
$$\:{Solve}: \\ $$$$\:\:{x}^{\mathrm{2}} ={a}+\left({y}−{z}\right)^{\mathrm{2}} \\ $$$$\:\:{y}^{\mathrm{2}} ={b}+\left({z}−{x}\right)^{\mathrm{2}} \\ $$$$\:\:{z}^{\mathrm{2}} ={c}+\left({x}−{y}\right)^{\mathrm{2}} \\ $$
Answered by mr W last updated on 04/Jan/25
(x+y−z)(x−y+z)=a   ...(i)  (−x+y+z)(x+y−z)=b   ...(ii)  (x−y+z)(−x+y+z)=c   ...(iii)  ⇒(−x+y+z)^2 (x−y+z)^2 (x+y−z)^2 =abc  assume abc≥0, otherwise no solution.  (−x+y+z)(x−y+z)(x+y−z)=±(√(abc))  ⇒−x+y+z=±((√(abc))/a)   ...(I)  ⇒x−y+z=±((√(abc))/b)   ...(II)  ⇒x+y−z=±((√(abc))/c)   ...(III)  (II)+(III):  ⇒2x=±((1/b)+(1/c))(√(abc))  x=±(1/2)((1/b)+(1/c))(√(abc))  similarly  y=±(1/2)((1/c)+(1/a))(√(abc))  z=±(1/2)((1/a)+(1/b))(√(abc))
$$\left({x}+{y}−{z}\right)\left({x}−{y}+{z}\right)={a}\:\:\:…\left({i}\right) \\ $$$$\left(−{x}+{y}+{z}\right)\left({x}+{y}−{z}\right)={b}\:\:\:…\left({ii}\right) \\ $$$$\left({x}−{y}+{z}\right)\left(−{x}+{y}+{z}\right)={c}\:\:\:…\left({iii}\right) \\ $$$$\Rightarrow\left(−{x}+{y}+{z}\right)^{\mathrm{2}} \left({x}−{y}+{z}\right)^{\mathrm{2}} \left({x}+{y}−{z}\right)^{\mathrm{2}} ={abc} \\ $$$${assume}\:{abc}\geqslant\mathrm{0},\:{otherwise}\:{no}\:{solution}. \\ $$$$\left(−{x}+{y}+{z}\right)\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)=\pm\sqrt{{abc}} \\ $$$$\Rightarrow−{x}+{y}+{z}=\pm\frac{\sqrt{{abc}}}{{a}}\:\:\:…\left({I}\right) \\ $$$$\Rightarrow{x}−{y}+{z}=\pm\frac{\sqrt{{abc}}}{{b}}\:\:\:…\left({II}\right) \\ $$$$\Rightarrow{x}+{y}−{z}=\pm\frac{\sqrt{{abc}}}{{c}}\:\:\:…\left({III}\right) \\ $$$$\left({II}\right)+\left({III}\right): \\ $$$$\Rightarrow\mathrm{2}{x}=\pm\left(\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)\sqrt{{abc}} \\ $$$${x}=\pm\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)\sqrt{{abc}} \\ $$$${similarly} \\ $$$${y}=\pm\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{c}}+\frac{\mathrm{1}}{{a}}\right)\sqrt{{abc}} \\ $$$${z}=\pm\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right)\sqrt{{abc}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *