Menu Close

0-x-2-x-2-2-1-sin-ax-dx-




Question Number 215393 by MrGaster last updated on 05/Jan/25
                 ∫_0 ^∞ (x^(2ν) /((x^2 +β^2 )^(μ+1) ))sin(ax)dx
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}\nu} }{\left({x}^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{\mu+\mathrm{1}} }\mathrm{sin}\left({ax}\right){dx} \\ $$$$ \\ $$
Commented by JamesZhou last updated on 05/Jan/25
numerator must be odd.
$${numerator}\:{must}\:{be}\:{odd}. \\ $$
Answered by MathematicalUser2357 last updated on 06/Jan/25
((x^(2ν+1) ((x^2 /β^2 )+1)^μ (β^2 +x^2 )^(−μ)  )/)
$$\frac{{x}^{\mathrm{2}\nu+\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} }{\beta^{\mathrm{2}} }+\mathrm{1}\right)^{\mu} \left(\beta^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{−\mu} \:}{}\cancel{\underline{\underbrace{ } \cancel{ }}} \\ $$
Commented by MathematicalUser2357 last updated on 06/Jan/25
삼각사 module is the same as 삼각수학2025 module
Commented by MathematicalUser2357 last updated on 06/Jan/25
(Why did i touched the heart icon instead of More) Continuing from the upper comment, trgns module is the same as 삼각수학2024 module (not supported in 2025)

Leave a Reply

Your email address will not be published. Required fields are marked *